Step
*
of Lemma
weak-continuity-principle-nat+-int-bool-double-ext
∀F,H:(ℕ+ ⟶ ℤ) ⟶ 𝔹. ∀f:ℕ+ ⟶ ℤ. ∀G:n:ℕ+ ⟶ {g:ℕ+ ⟶ ℤ| f = g ∈ (ℕ+n ⟶ ℤ)} . ∃n:ℕ+. (F f = F (G n) ∧ H f = H (G n))
BY
{ Extract of Obid: weak-continuity-principle-nat+-int-bool-double
normalizes to:
λF,H,f,G. <mu(λn.(F f =b F (G (n + 1)) ∧b H f =b H (G (n + 1)))) + 1, Ax, Ax>
not unfolding mu eq_bool band
finishing with Auto }
Latex:
Latex:
\mforall{}F,H:(\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}) {}\mrightarrow{} \mBbbB{}. \mforall{}f:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}. \mforall{}G:n:\mBbbN{}\msupplus{} {}\mrightarrow{} \{g:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}| f = g\} .
\mexists{}n:\mBbbN{}\msupplus{}. (F f = F (G n) \mwedge{} H f = H (G n))
By
Latex:
Extract of Obid: weak-continuity-principle-nat+-int-bool-double
normalizes to:
\mlambda{}F,H,f,G. <mu(\mlambda{}n.(F f =b F (G (n + 1)) \mwedge{}\msubb{} H f =b H (G (n + 1)))) + 1, Ax, Ax>
not unfolding mu eq\_bool band
finishing with Auto
Home
Index