Step
*
1
1
of Lemma
l-union-subset
1. T : Type
2. eq : EqDecider(T)
3. as : T List
4. u : T
5. v : T List
6. v ⊆ as
⇒ (reduce(λa,L. insert(a;L);as;v) ~ as)
⊢ [u / v] ⊆ as
⇒ (insert(u;reduce(λa,L. insert(a;L);as;v)) ~ as)
BY
{ ((D 0 THENA Auto)
THEN (RWO "l_contains_cons" (-1) THENA Auto)
THEN D -1
THEN ThinTrivial
THEN RW (AddrC [1] UnfoldTopAbC) 0
THEN HypSubst' (-1) 0
THEN (RWO "eval_list_sq" 0 THENA Auto)
THEN (CallByValueReduce 0 THENA Auto)
THEN AutoSplit) }
Latex:
Latex:
1. T : Type
2. eq : EqDecider(T)
3. as : T List
4. u : T
5. v : T List
6. v \msubseteq{} as {}\mRightarrow{} (reduce(\mlambda{}a,L. insert(a;L);as;v) \msim{} as)
\mvdash{} [u / v] \msubseteq{} as {}\mRightarrow{} (insert(u;reduce(\mlambda{}a,L. insert(a;L);as;v)) \msim{} as)
By
Latex:
((D 0 THENA Auto)
THEN (RWO "l\_contains\_cons" (-1) THENA Auto)
THEN D -1
THEN ThinTrivial
THEN RW (AddrC [1] UnfoldTopAbC) 0
THEN HypSubst' (-1) 0
THEN (RWO "eval\_list\_sq" 0 THENA Auto)
THEN (CallByValueReduce 0 THENA Auto)
THEN AutoSplit)
Home
Index