Step
*
1
1
of Lemma
mapfilter-no-rep-fun
1. T : Type
2. U : Type
3. V : Type
4. eq : EqDecider(U)
5. L : T List
6. u : U
7. f : T ⟶ U
8. g : {x:{x:T| (x ∈ L)} | ↑(eq f[x] u)} ⟶ V
9. no_repeats(U;map(f;L))
10. ||mapfilter(g;λx.(eq f[x] u);L)|| ∈ ℤ
11. L' : T List
12. L' ⊆ L
13. filter(λx.(eq f[x] u);L) = L' ∈ (T List)
14. 2 ≤ ||L'||
15. ∀x:T. ((x ∈ L')
⇒ (f[x] = u ∈ U))
16. f[L'[0]] = f[L'[1]] ∈ U
17. ∀x,y:T. (x before y ∈ L'
⇒ x before y ∈ L)
18. L'[0] before L'[1] ∈ L
⊢ False
BY
{ (RepUR ``l_before sublist`` (-1) THEN ExRepD) }
1
1. T : Type
2. U : Type
3. V : Type
4. eq : EqDecider(U)
5. L : T List
6. u : U
7. f : T ⟶ U
8. g : {x:{x:T| (x ∈ L)} | ↑(eq f[x] u)} ⟶ V
9. no_repeats(U;map(f;L))
10. ||mapfilter(g;λx.(eq f[x] u);L)|| ∈ ℤ
11. L' : T List
12. L' ⊆ L
13. filter(λx.(eq f[x] u);L) = L' ∈ (T List)
14. 2 ≤ ||L'||
15. ∀x:T. ((x ∈ L')
⇒ (f[x] = u ∈ U))
16. f[L'[0]] = f[L'[1]] ∈ U
17. ∀x,y:T. (x before y ∈ L'
⇒ x before y ∈ L)
18. f1 : ℕ2 ⟶ ℕ||L||
19. increasing(f1;2)
20. ∀j:ℕ2. ([L'[0]; L'[1]][j] = L[f1 j] ∈ T)
⊢ False
Latex:
Latex:
1. T : Type
2. U : Type
3. V : Type
4. eq : EqDecider(U)
5. L : T List
6. u : U
7. f : T {}\mrightarrow{} U
8. g : \{x:\{x:T| (x \mmember{} L)\} | \muparrow{}(eq f[x] u)\} {}\mrightarrow{} V
9. no\_repeats(U;map(f;L))
10. ||mapfilter(g;\mlambda{}x.(eq f[x] u);L)|| \mmember{} \mBbbZ{}
11. L' : T List
12. L' \msubseteq{} L
13. filter(\mlambda{}x.(eq f[x] u);L) = L'
14. 2 \mleq{} ||L'||
15. \mforall{}x:T. ((x \mmember{} L') {}\mRightarrow{} (f[x] = u))
16. f[L'[0]] = f[L'[1]]
17. \mforall{}x,y:T. (x before y \mmember{} L' {}\mRightarrow{} x before y \mmember{} L)
18. L'[0] before L'[1] \mmember{} L
\mvdash{} False
By
Latex:
(RepUR ``l\_before sublist`` (-1) THEN ExRepD)
Home
Index