Step
*
2
2
of Lemma
remove-repeats-fun-as-filter
1. A : Type
2. B : Type
3. eq : EqDecider(B)
4. f : A ā¶ B
5. R : A ā¶ A ā¶ š¹
6. u : A
7. v : A List
8. Ā¬(āxā[u / v]. (āR[x;u]) ā§ ((f x) = (f u) ā B))
9. Irrefl(A;x,y.āR[x;y])
10. StAntiSym(A;x,y.āR[x;y])
11. sorted-by(Ī»x,y. (āR[x;y]);v)
12. (āzāv.āR[u;z])
13. remove-repeats-fun(eq;f;v) ~ filter(Ī»a.(Ā¬b(āxāv.R[x;a] ā§b (eqof(eq) (f x) (f a)))_b);v)
14. x : A
15. (x ā v)
16. Ā¬(āx@0ā[u / v]. (āR[x@0;x]) ā§ ((f x@0) = (f x) ā B))
17. (āx@0āv. (āR[x@0;x]) ā§ ((f x@0) = (f x) ā B))
ā¢ False
BY
{ (D (-2) THEN RWO "l_exists_cons" 0 THEN Auto) }
Latex:
Latex:
1. A : Type
2. B : Type
3. eq : EqDecider(B)
4. f : A {}\mrightarrow{} B
5. R : A {}\mrightarrow{} A {}\mrightarrow{} \mBbbB{}
6. u : A
7. v : A List
8. \mneg{}(\mexists{}x\mmember{}[u / v]. (\muparrow{}R[x;u]) \mwedge{} ((f x) = (f u)))
9. Irrefl(A;x,y.\muparrow{}R[x;y])
10. StAntiSym(A;x,y.\muparrow{}R[x;y])
11. sorted-by(\mlambda{}x,y. (\muparrow{}R[x;y]);v)
12. (\mforall{}z\mmember{}v.\muparrow{}R[u;z])
13. remove-repeats-fun(eq;f;v) \msim{} filter(\mlambda{}a.(\mneg{}\msubb{}(\mexists{}x\mmember{}v.R[x;a] \mwedge{}\msubb{} (eqof(eq) (f x) (f a)))\_b);v)
14. x : A
15. (x \mmember{} v)
16. \mneg{}(\mexists{}x@0\mmember{}[u / v]. (\muparrow{}R[x@0;x]) \mwedge{} ((f x@0) = (f x)))
17. (\mexists{}x@0\mmember{}v. (\muparrow{}R[x@0;x]) \mwedge{} ((f x@0) = (f x)))
\mvdash{} False
By
Latex:
(D (-2) THEN RWO "l\_exists\_cons" 0 THEN Auto)
Home
Index