Step
*
of Lemma
retract-compose_wf
∀[T,A:Type]. ∀[f:T ⟶ A]. ∀[h:Base].
(retract-compose(h;f) ∈ {g:T ⟶ A| g = f ∈ (T ⟶ A)} ) supposing (((T ⊆r Base) ∧ (A ⊆r Base) ∧ retract(T;h)) and value\000C-type(T))
BY
{ (Auto THEN Assert ⌜retract-compose(h;f) = f ∈ (T ⟶ A)⌝⋅ THEN Auto) }
1
.....assertion.....
1. T : Type
2. A : Type
3. f : T ⟶ A
4. h : Base
5. value-type(T)
6. T ⊆r Base
7. A ⊆r Base
8. retract(T;h)
⊢ retract-compose(h;f) = f ∈ (T ⟶ A)
Latex:
Latex:
\mforall{}[T,A:Type]. \mforall{}[f:T {}\mrightarrow{} A]. \mforall{}[h:Base].
(retract-compose(h;f) \mmember{} \{g:T {}\mrightarrow{} A| g = f\} ) supposing (((T \msubseteq{}r Base) \mwedge{} (A \msubseteq{}r Base) \mwedge{} retract(T;h)) \000Cand value-type(T))
By
Latex:
(Auto THEN Assert \mkleeneopen{}retract-compose(h;f) = f\mkleeneclose{}\mcdot{} THEN Auto)
Home
Index