Step
*
2
2
of Lemma
strict-majority-or-max-property
1. t : ℕ
2. L : ℤ List
3. ∀v:ℤ
(case strict-majority(IntDeq;L) of inl(x) => x | inr(z) => if null(L) then 0 else imax-list(L) fi
= v
∈ ℤ) supposing
(((t + 1) ≤ ||filter(λx.(x =z v);L)||) and
(||L|| = ((2 * t) + 1) ∈ ℤ))
4. ||L|| ≥ 1
5. y : Unit
6. strict-majority(IntDeq;L) = (inr y ) ∈ (ℤ?)
⊢ (if null(L) then 0 else imax-list(L) fi ∈ L)
BY
{ (DVar `L' THEN All Reduce THEN Auto) }
1
1. t : ℕ
2. u : ℤ
3. v : ℤ List
4. ∀v@0:ℤ
(case strict-majority(IntDeq;[u / v]) of inl(x) => x | inr(z) => imax-list([u / v]) = v@0 ∈ ℤ) supposing
(((t + 1) ≤ ||if (u =z v@0) then [u / filter(λx.(x =z v@0);v)] else filter(λx.(x =z v@0);v) fi ||) and
((||v|| + 1) = ((2 * t) + 1) ∈ ℤ))
5. (||v|| + 1) ≥ 1
6. y : Unit
7. strict-majority(IntDeq;[u / v]) = (inr y ) ∈ (ℤ?)
⊢ (imax-list([u / v]) ∈ [u / v])
Latex:
Latex:
1. t : \mBbbN{}
2. L : \mBbbZ{} List
3. \mforall{}v:\mBbbZ{}
(case strict-majority(IntDeq;L)
of inl(x) =>
x
| inr(z) =>
if null(L) then 0 else imax-list(L) fi
= v) supposing
(((t + 1) \mleq{} ||filter(\mlambda{}x.(x =\msubz{} v);L)||) and
(||L|| = ((2 * t) + 1)))
4. ||L|| \mgeq{} 1
5. y : Unit
6. strict-majority(IntDeq;L) = (inr y )
\mvdash{} (if null(L) then 0 else imax-list(L) fi \mmember{} L)
By
Latex:
(DVar `L' THEN All Reduce THEN Auto)
Home
Index