Step
*
1
1
1
of Lemma
values-for-distinct_wf
.....subterm..... T:t
2:n
1. A : Type
2. V : Type
3. eq : EqDecider(A)
4. L : (A × V) List
⊢ map(λp.(fst(p));L) ∈ {a:A| ↑isl(apply-alist(eq;L;a))}  List
BY
{ (ListInd (-1) THEN Reduce 0) }
1
1. A : Type
2. V : Type
3. eq : EqDecider(A)
⊢ [] ∈ {a:A| ↑isl(apply-alist(eq;[];a))}  List
2
1. A : Type
2. V : Type
3. eq : EqDecider(A)
4. u : A × V
5. v : (A × V) List
6. map(λp.(fst(p));v) ∈ {a:A| ↑isl(apply-alist(eq;v;a))}  List
⊢ [fst(u) / map(λp.(fst(p));v)] ∈ {a:A| ↑isl(if eqof(eq) (fst(u)) a then inl (snd(u)) else apply-alist(eq;v;a) fi )}  Li\000Cst
Latex:
Latex:
.....subterm.....  T:t
2:n
1.  A  :  Type
2.  V  :  Type
3.  eq  :  EqDecider(A)
4.  L  :  (A  \mtimes{}  V)  List
\mvdash{}  map(\mlambda{}p.(fst(p));L)  \mmember{}  \{a:A|  \muparrow{}isl(apply-alist(eq;L;a))\}    List
By
Latex:
(ListInd  (-1)  THEN  Reduce  0)
Home
Index