Step
*
1
1
1
1
of Lemma
equipollent-distinct-representatives
.....assertion.....
1. [A] : Type
2. [E] : A ⟶ A ⟶ ℙ
3. EquivRel(A;x,y.E[x;y])
4. L : A List
5. (∀a,b∈L. ¬E[a;b])
6. ∀a:A. ∃i:ℕ||L||. E[a;L[i]]
7. rep : a:A ⟶ ℕ||L||
8. ∀a:A. E[a;L[rep a]]
⊢ ∀i,j:ℕ||L||. (E[L[i];L[j]]
⇒ (i = j ∈ ℤ))
BY
{ (Auto
THEN (Decide ⌜i < j⌝⋅ THENA Auto)
THEN Try (((With ⌜j⌝ (D 5)⋅ THENM With ⌜i⌝ (D (-1))⋅) THEN Complete (Auto))⋅)
THEN (Decide ⌜j < i⌝⋅ THENA Auto)
THEN Auto'
THEN (With ⌜i⌝ (D 5)⋅ THENM With ⌜j⌝ (D (-1))⋅)
THEN Auto
THEN D -1
THEN Auto) }
Latex:
Latex:
.....assertion.....
1. [A] : Type
2. [E] : A {}\mrightarrow{} A {}\mrightarrow{} \mBbbP{}
3. EquivRel(A;x,y.E[x;y])
4. L : A List
5. (\mforall{}a,b\mmember{}L. \mneg{}E[a;b])
6. \mforall{}a:A. \mexists{}i:\mBbbN{}||L||. E[a;L[i]]
7. rep : a:A {}\mrightarrow{} \mBbbN{}||L||
8. \mforall{}a:A. E[a;L[rep a]]
\mvdash{} \mforall{}i,j:\mBbbN{}||L||. (E[L[i];L[j]] {}\mRightarrow{} (i = j))
By
Latex:
(Auto
THEN (Decide \mkleeneopen{}i < j\mkleeneclose{}\mcdot{} THENA Auto)
THEN Try (((With \mkleeneopen{}j\mkleeneclose{} (D 5)\mcdot{} THENM With \mkleeneopen{}i\mkleeneclose{} (D (-1))\mcdot{}) THEN Complete (Auto))\mcdot{})
THEN (Decide \mkleeneopen{}j < i\mkleeneclose{}\mcdot{} THENA Auto)
THEN Auto'
THEN (With \mkleeneopen{}i\mkleeneclose{} (D 5)\mcdot{} THENM With \mkleeneopen{}j\mkleeneclose{} (D (-1))\mcdot{})
THEN Auto
THEN D -1
THEN Auto)
Home
Index