Step
*
1
2
1
of Lemma
equipollent-quotient2
1. [A] : Type
2. E : A ⟶ A ⟶ ℙ
3. d : ∀x,y:A. Dec(↓E[x;y])
4. EquivRel(A;x,y.↓E[x;y])
5. ∀x,y:A. (isl(d x y) ∈ 𝔹)
6. ∀x,y:A. (↑isl(d x y)
⇐⇒ ↓E[x;y])
7. A ~ a:x,y:A//(↑isl(d x y)) × {b:A| ↑isl(d a b)}
8. EquivRel(A;x,y.↑isl(d x y))
9. x,y:A//(↓E[x;y]) ≡ x,y:A//(↑isl(d x y))
10. a:x,y:A//(↑isl(d x y)) × {b:A| ↑isl(d a b)} ∈ Type
11. a:x,y:A//(↓E[x;y]) × {b:A| ↑isl(d a b)} ∈ Type
⊢ A ~ a:x,y:A//(↓E[x;y]) × {b:A| ↑isl(d a b)}
BY
{ (RWO "-5" 0 THENA Auto) }
1
1. [A] : Type
2. E : A ⟶ A ⟶ ℙ
3. d : ∀x,y:A. Dec(↓E[x;y])
4. EquivRel(A;x,y.↓E[x;y])
5. ∀x,y:A. (isl(d x y) ∈ 𝔹)
6. ∀x,y:A. (↑isl(d x y)
⇐⇒ ↓E[x;y])
7. A ~ a:x,y:A//(↑isl(d x y)) × {b:A| ↑isl(d a b)}
8. EquivRel(A;x,y.↑isl(d x y))
9. x,y:A//(↓E[x;y]) ≡ x,y:A//(↑isl(d x y))
10. a:x,y:A//(↑isl(d x y)) × {b:A| ↑isl(d a b)} ∈ Type
11. a:x,y:A//(↓E[x;y]) × {b:A| ↑isl(d a b)} ∈ Type
⊢ a:x,y:A//(↑isl(d x y)) × {b:A| ↑isl(d a b)} ~ a:x,y:A//(↓E[x;y]) × {b:A| ↑isl(d a b)}
Latex:
Latex:
1. [A] : Type
2. E : A {}\mrightarrow{} A {}\mrightarrow{} \mBbbP{}
3. d : \mforall{}x,y:A. Dec(\mdownarrow{}E[x;y])
4. EquivRel(A;x,y.\mdownarrow{}E[x;y])
5. \mforall{}x,y:A. (isl(d x y) \mmember{} \mBbbB{})
6. \mforall{}x,y:A. (\muparrow{}isl(d x y) \mLeftarrow{}{}\mRightarrow{} \mdownarrow{}E[x;y])
7. A \msim{} a:x,y:A//(\muparrow{}isl(d x y)) \mtimes{} \{b:A| \muparrow{}isl(d a b)\}
8. EquivRel(A;x,y.\muparrow{}isl(d x y))
9. x,y:A//(\mdownarrow{}E[x;y]) \mequiv{} x,y:A//(\muparrow{}isl(d x y))
10. a:x,y:A//(\muparrow{}isl(d x y)) \mtimes{} \{b:A| \muparrow{}isl(d a b)\} \mmember{} Type
11. a:x,y:A//(\mdownarrow{}E[x;y]) \mtimes{} \{b:A| \muparrow{}isl(d a b)\} \mmember{} Type
\mvdash{} A \msim{} a:x,y:A//(\mdownarrow{}E[x;y]) \mtimes{} \{b:A| \muparrow{}isl(d a b)\}
By
Latex:
(RWO "-5" 0 THENA Auto)
Home
Index