Step * 2 1 of Lemma equiv-equipollent-iff-quotient-equipollent


1. [A] Type
2. [B] Type
3. A ⟶ A ⟶ ℙ
4. [%] EquivRel(A;x,y.E[x;y])
5. ∀f:A ⟶ B. ∀b:B.  SqStable(∃a:A. ((f a) b ∈ B))
6. (x,y:A//E[x;y]) ⟶ B
7. Inj(x,y:A//E[x;y];B;f)
8. Surj(x,y:A//E[x;y];B;f)
⊢ mod (a1,a2.E[a1;a2])
BY
(D With ⌜f⌝  THEN Auto) }

1
1. [A] Type
2. [B] Type
3. A ⟶ A ⟶ ℙ
4. [%] EquivRel(A;x,y.E[x;y])
5. ∀f:A ⟶ B. ∀b:B.  SqStable(∃a:A. ((f a) b ∈ B))
6. (x,y:A//E[x;y]) ⟶ B
7. Inj(x,y:A//E[x;y];B;f)
8. Surj(x,y:A//E[x;y];B;f)
⊢ Surj(A;B;f)

2
1. Type
2. Type
3. A ⟶ A ⟶ ℙ
4. EquivRel(A;x,y.E[x;y])
5. ∀f:A ⟶ B. ∀b:B.  SqStable(∃a:A. ((f a) b ∈ B))
6. (x,y:A//E[x;y]) ⟶ B
7. Inj(x,y:A//E[x;y];B;f)
8. Surj(x,y:A//E[x;y];B;f)
9. Surj(A;B;f)
10. a1 A
11. a2 A
12. (f a1) (f a2) ∈ B
⊢ ↓E[a1;a2]

3
1. Type
2. Type
3. A ⟶ A ⟶ ℙ
4. EquivRel(A;x,y.E[x;y])
5. ∀f:A ⟶ B. ∀b:B.  SqStable(∃a:A. ((f a) b ∈ B))
6. (x,y:A//E[x;y]) ⟶ B
7. Inj(x,y:A//E[x;y];B;f)
8. Surj(x,y:A//E[x;y];B;f)
9. Surj(A;B;f)
10. a1 A
11. a2 A
12. E[a1;a2]
⊢ (f a1) (f a2) ∈ B


Latex:


Latex:

1.  [A]  :  Type
2.  [B]  :  Type
3.  E  :  A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}
4.  [\%]  :  EquivRel(A;x,y.E[x;y])
5.  \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}b:B.    SqStable(\mexists{}a:A.  ((f  a)  =  b))
6.  f  :  (x,y:A//E[x;y])  {}\mrightarrow{}  B
7.  Inj(x,y:A//E[x;y];B;f)
8.  Surj(x,y:A//E[x;y];B;f)
\mvdash{}  A  \msim{}  B  mod  (a1,a2.E[a1;a2])


By


Latex:
(D  0  With  \mkleeneopen{}f\mkleeneclose{}    THEN  Auto)




Home Index