Step * 1 1 of Lemma finite'_functionality_wrt_equipollent

.....antecedent..... 
1. [A] Type
2. [B] Type
3. A ⟶ B
4. Inj(A;B;f)
5. ∀b:B. ∃a:A. ((f a) b ∈ B)
6. ∀f:A ⟶ A. (Inj(A;A;f)  Surj(A;A;f))
7. B ⟶ B
8. Inj(B;B;g)
9. b:B ⟶ A
10. ∀b:B. ((f (h b)) b ∈ B)
⊢ Inj(A;A;(h g) f)
BY
Assert ⌜Inj(B;A;h)⌝⋅ }

1
.....assertion..... 
1. [A] Type
2. [B] Type
3. A ⟶ B
4. Inj(A;B;f)
5. ∀b:B. ∃a:A. ((f a) b ∈ B)
6. ∀f:A ⟶ A. (Inj(A;A;f)  Surj(A;A;f))
7. B ⟶ B
8. Inj(B;B;g)
9. b:B ⟶ A
10. ∀b:B. ((f (h b)) b ∈ B)
⊢ Inj(B;A;h)

2
1. [A] Type
2. [B] Type
3. A ⟶ B
4. Inj(A;B;f)
5. ∀b:B. ∃a:A. ((f a) b ∈ B)
6. ∀f:A ⟶ A. (Inj(A;A;f)  Surj(A;A;f))
7. B ⟶ B
8. Inj(B;B;g)
9. b:B ⟶ A
10. ∀b:B. ((f (h b)) b ∈ B)
11. Inj(B;A;h)
⊢ Inj(A;A;(h g) f)


Latex:


Latex:
.....antecedent..... 
1.  [A]  :  Type
2.  [B]  :  Type
3.  f  :  A  {}\mrightarrow{}  B
4.  Inj(A;B;f)
5.  \mforall{}b:B.  \mexists{}a:A.  ((f  a)  =  b)
6.  \mforall{}f:A  {}\mrightarrow{}  A.  (Inj(A;A;f)  {}\mRightarrow{}  Surj(A;A;f))
7.  g  :  B  {}\mrightarrow{}  B
8.  Inj(B;B;g)
9.  h  :  b:B  {}\mrightarrow{}  A
10.  \mforall{}b:B.  ((f  (h  b))  =  b)
\mvdash{}  Inj(A;A;(h  o  g)  o  f)


By


Latex:
Assert  \mkleeneopen{}Inj(B;A;h)\mkleeneclose{}\mcdot{}




Home Index