Step
*
of Lemma
involution-has-fixpoint
∀n:ℕ
∀[T:Type]. (T ~ ℕn
⇒ (∀f:T ⟶ T. ((∀x:T. ((f (f x)) = x ∈ T))
⇒ ((n rem 2) = 1 ∈ ℤ)
⇒ (∃x:T. ((f x) = x ∈ T)))))
BY
{ (Intros THEN (InstLemma `count-by-orbits` [⌜n⌝;⌜T⌝;⌜f⌝]⋅ THENA Auto)) }
1
.....antecedent.....
1. n : ℕ
2. T : Type
3. T ~ ℕn
4. f : T ⟶ T
5. ∀x:T. ((f (f x)) = x ∈ T)
6. (n rem 2) = 1 ∈ ℤ
⊢ Inj(T;T;f)
2
1. n : ℕ
2. [T] : Type
3. T ~ ℕn
4. f : T ⟶ T
5. ∀x:T. ((f (f x)) = x ∈ T)
6. (n rem 2) = 1 ∈ ℤ
7. ∃orbits:T List List
((∀o∈orbits.orbit(T;f;o))
∧ (∀a:T. (∃o∈orbits. (a ∈ o)))
∧ (∀o1,o2∈orbits. l_disjoint(T;o1;o2))
∧ no_repeats(T List;orbits)
∧ (n = l_sum(map(λo.||o||;orbits)) ∈ ℤ))
⊢ ∃x:T. ((f x) = x ∈ T)
Latex:
Latex:
\mforall{}n:\mBbbN{}
\mforall{}[T:Type]
(T \msim{} \mBbbN{}n {}\mRightarrow{} (\mforall{}f:T {}\mrightarrow{} T. ((\mforall{}x:T. ((f (f x)) = x)) {}\mRightarrow{} ((n rem 2) = 1) {}\mRightarrow{} (\mexists{}x:T. ((f x) = x)))))
By
Latex:
(Intros THEN (InstLemma `count-by-orbits` [\mkleeneopen{}n\mkleeneclose{};\mkleeneopen{}T\mkleeneclose{};\mkleeneopen{}f\mkleeneclose{}]\mcdot{} THENA Auto))
Home
Index