Step
*
1
1
1
of Lemma
fan-implies-barred-not-unbounded
1. T : Type
2. A : (T List) ⟶ ℙ
3. dbar(T;A)
4. down-closed(T;¬(A))
5. k : ℕ
6. as : T List
7. ||as|| = (k + 1) ∈ ℤ
8. ¬(A) as
9. n : ℕk
10. A map(λi.if i <z k then as[i] else as[0] fi ;upto(n))
⊢ False
BY
{ OnMaybeHyp 4 (\h. (RepUR ``down-closed R-closed`` h
THEN ((InstHyp [⌜as⌝; ⌜map(λi.if i <z k then as[i] else as[0] fi ;upto(n))⌝] h⋅
THENM (RepUR ``predicate-not`` (-1) THEN Auto)
)
THENA (Auto
THEN (BLemma `iseg_select` THEN Auto)
THEN (All (RWW "map-length length_upto")⋅ THENA Auto)
THEN Auto')
)
)) }
1
1. T : Type
2. A : (T List) ⟶ ℙ
3. dbar(T;A)
4. ∀bs,as:T List. (as ≤ bs
⇒ (¬(A) bs)
⇒ (¬(A) as))
5. k : ℕ
6. as : T List
7. ||as|| = (k + 1) ∈ ℤ
8. ¬(A) as
9. n : ℕk
10. A map(λi.if i <z k then as[i] else as[0] fi ;upto(n))
11. n ≤ ||as||
12. i : ℕ
13. i < n
⊢ map(λi.if i <z k then as[i] else as[0] fi ;upto(n))[i] = as[i] ∈ T
Latex:
Latex:
1. T : Type
2. A : (T List) {}\mrightarrow{} \mBbbP{}
3. dbar(T;A)
4. down-closed(T;\mneg{}(A))
5. k : \mBbbN{}
6. as : T List
7. ||as|| = (k + 1)
8. \mneg{}(A) as
9. n : \mBbbN{}k
10. A map(\mlambda{}i.if i <z k then as[i] else as[0] fi ;upto(n))
\mvdash{} False
By
Latex:
OnMaybeHyp 4 (\mbackslash{}h. (RepUR ``down-closed R-closed`` h
THEN ((InstHyp [\mkleeneopen{}as\mkleeneclose{}; \mkleeneopen{}map(\mlambda{}i.if i <z k then as[i] else as[0] fi ;upto(n))\mkleeneclose{}] h\mcdot{}
THENM (RepUR ``predicate-not`` (-1) THEN Auto)
)
THENA (Auto
THEN (BLemma `iseg\_select` THEN Auto)
THEN (All (RWW "map-length length\_upto")\mcdot{} THENA Auto)
THEN Auto')
)
))
Home
Index