Step
*
2
1
1
of Lemma
twkl!-implies-dfan
1. T : Type
2. ∃k:ℕ. T ~ ℕk
3. WKL!(T)
4. s : (T List) ⟶ ℙ
5. ∀t:T List. Dec(s t)
6. ∀f:ℕ ⟶ T. ∃n:ℕ. (s map(f;upto(n)))
7. ¬(s [])
8. ∀a,b:ℕ.  ((a ≤ b) 
⇒ tree-big(T;upwd-closure(T;s);a) 
⇒ tree-big(T;upwd-closure(T;s);b))
9. ∀n:ℕ
     (tree-big(T;upwd-closure(T;s);n)
     
⇒ (∃k:ℕn. ((¬tree-big(T;upwd-closure(T;s);k)) ∧ tree-big(T;upwd-closure(T;s);k + 1))))
10. ∀n:ℕ. ((¬tree-big(T;upwd-closure(T;s);n)) 
⇒ (∃as:T List. ((||as|| = n ∈ ℤ) ∧ (¬(upwd-closure(T;s) as)))))
⊢ ∃a:{n:ℕ| tree-big(T;upwd-closure(T;s);n)}  ⟶ (T List)
   ((∀n:{n:ℕ| tree-big(T;upwd-closure(T;s);n)} 
       (||a n|| < n ∧ (¬(upwd-closure(T;s) (a n))) ∧ tree-big(T;upwd-closure(T;s);||a n|| + 1)))
   ∧ (∀n,m:{n:ℕ| tree-big(T;upwd-closure(T;s);n)} .  ((a n) = (a m) ∈ (T List))))
BY
{ (Skolemize (-2) `nb'⋅⋅ THENA Auto') }
1
.....aux..... 
1. T : Type
2. ∃k:ℕ. T ~ ℕk
3. WKL!(T)
4. s : (T List) ⟶ ℙ
5. ∀t:T List. Dec(s t)
6. ∀f:ℕ ⟶ T. ∃n:ℕ. (s map(f;upto(n)))
7. ¬(s [])
8. ∀a,b:ℕ.  ((a ≤ b) 
⇒ tree-big(T;upwd-closure(T;s);a) 
⇒ tree-big(T;upwd-closure(T;s);b))
9. ∀n:ℕ
     (tree-big(T;upwd-closure(T;s);n)
     
⇒ (∃k:ℕn. ((¬tree-big(T;upwd-closure(T;s);k)) ∧ tree-big(T;upwd-closure(T;s);k + 1))))
10. ∀n:ℕ. ((¬tree-big(T;upwd-closure(T;s);n)) 
⇒ (∃as:T List. ((||as|| = n ∈ ℤ) ∧ (¬(upwd-closure(T;s) as)))))
11. ∀n:ℕ
      (tree-big(T;upwd-closure(T;s);n)
      
⇒ (∃k:ℕn. ((¬tree-big(T;upwd-closure(T;s);k)) ∧ tree-big(T;upwd-closure(T;s);k + 1))))
12. n : ℕ
13. [%25] : tree-big(T;upwd-closure(T;s);n)
⊢ tree-big(T;upwd-closure(T;s);n)
2
1. T : Type
2. ∃k:ℕ. T ~ ℕk
3. WKL!(T)
4. s : (T List) ⟶ ℙ
5. ∀t:T List. Dec(s t)
6. ∀f:ℕ ⟶ T. ∃n:ℕ. (s map(f;upto(n)))
7. ¬(s [])
8. ∀a,b:ℕ.  ((a ≤ b) 
⇒ tree-big(T;upwd-closure(T;s);a) 
⇒ tree-big(T;upwd-closure(T;s);b))
9. ∀n:{n:ℕ| tree-big(T;upwd-closure(T;s);n)} 
     ∃k:ℕn. ((¬tree-big(T;upwd-closure(T;s);k)) ∧ tree-big(T;upwd-closure(T;s);k + 1))
10. ∀n:ℕ. ((¬tree-big(T;upwd-closure(T;s);n)) 
⇒ (∃as:T List. ((||as|| = n ∈ ℤ) ∧ (¬(upwd-closure(T;s) as)))))
11. nb : n:{n:ℕ| tree-big(T;upwd-closure(T;s);n)}  ⟶ ℕn
12. ∀n:{n:ℕ| tree-big(T;upwd-closure(T;s);n)} 
      ((¬tree-big(T;upwd-closure(T;s);nb n)) ∧ tree-big(T;upwd-closure(T;s);(nb n) + 1))
⊢ ∃a:{n:ℕ| tree-big(T;upwd-closure(T;s);n)}  ⟶ (T List)
   ((∀n:{n:ℕ| tree-big(T;upwd-closure(T;s);n)} 
       (||a n|| < n ∧ (¬(upwd-closure(T;s) (a n))) ∧ tree-big(T;upwd-closure(T;s);||a n|| + 1)))
   ∧ (∀n,m:{n:ℕ| tree-big(T;upwd-closure(T;s);n)} .  ((a n) = (a m) ∈ (T List))))
Latex:
Latex:
1.  T  :  Type
2.  \mexists{}k:\mBbbN{}.  T  \msim{}  \mBbbN{}k
3.  WKL!(T)
4.  s  :  (T  List)  {}\mrightarrow{}  \mBbbP{}
5.  \mforall{}t:T  List.  Dec(s  t)
6.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  T.  \mexists{}n:\mBbbN{}.  (s  map(f;upto(n)))
7.  \mneg{}(s  [])
8.  \mforall{}a,b:\mBbbN{}.    ((a  \mleq{}  b)  {}\mRightarrow{}  tree-big(T;upwd-closure(T;s);a)  {}\mRightarrow{}  tree-big(T;upwd-closure(T;s);b))
9.  \mforall{}n:\mBbbN{}
          (tree-big(T;upwd-closure(T;s);n)
          {}\mRightarrow{}  (\mexists{}k:\mBbbN{}n.  ((\mneg{}tree-big(T;upwd-closure(T;s);k))  \mwedge{}  tree-big(T;upwd-closure(T;s);k  +  1))))
10.  \mforall{}n:\mBbbN{}
            ((\mneg{}tree-big(T;upwd-closure(T;s);n))
            {}\mRightarrow{}  (\mexists{}as:T  List.  ((||as||  =  n)  \mwedge{}  (\mneg{}(upwd-closure(T;s)  as)))))
\mvdash{}  \mexists{}a:\{n:\mBbbN{}|  tree-big(T;upwd-closure(T;s);n)\}    {}\mrightarrow{}  (T  List)
      ((\mforall{}n:\{n:\mBbbN{}|  tree-big(T;upwd-closure(T;s);n)\} 
              (||a  n||  <  n  \mwedge{}  (\mneg{}(upwd-closure(T;s)  (a  n)))  \mwedge{}  tree-big(T;upwd-closure(T;s);||a  n||  +  1)))
      \mwedge{}  (\mforall{}n,m:\{n:\mBbbN{}|  tree-big(T;upwd-closure(T;s);n)\}  .    ((a  n)  =  (a  m))))
By
Latex:
(Skolemize  (-2)  `nb'\mcdot{}\mcdot{}  THENA  Auto')
Home
Index