Step
*
1
1
of Lemma
fset-ac-le-distributive
1. T : Type
2. eq : EqDecider(T)
3. a : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)}
4. b : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)}
5. c : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)}
⊢ fset-ac-le(eq;fset-ac-glb(eq;a;b);fset-ac-lub(eq;b;c))
BY
{ (Using [`ac2',⌜b⌝] (BLemma `fset-ac-le_transitivity`)⋅
THEN Auto
THEN (InstLemma `fset-ac-glb-is-glb` [⌜T⌝;⌜eq⌝;⌜a⌝;⌜b⌝]⋅ THEN Auto)
THEN InstLemma `fset-ac-lub-is-lub` [⌜T⌝;⌜eq⌝;⌜b⌝;⌜c⌝]⋅
THEN Auto) }
Latex:
Latex:
1. T : Type
2. eq : EqDecider(T)
3. a : \{ac:fset(fset(T))| \muparrow{}fset-antichain(eq;ac)\}
4. b : \{ac:fset(fset(T))| \muparrow{}fset-antichain(eq;ac)\}
5. c : \{ac:fset(fset(T))| \muparrow{}fset-antichain(eq;ac)\}
\mvdash{} fset-ac-le(eq;fset-ac-glb(eq;a;b);fset-ac-lub(eq;b;c))
By
Latex:
(Using [`ac2',\mkleeneopen{}b\mkleeneclose{}] (BLemma `fset-ac-le\_transitivity`)\mcdot{}
THEN Auto
THEN (InstLemma `fset-ac-glb-is-glb` [\mkleeneopen{}T\mkleeneclose{};\mkleeneopen{}eq\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}]\mcdot{} THEN Auto)
THEN InstLemma `fset-ac-lub-is-lub` [\mkleeneopen{}T\mkleeneclose{};\mkleeneopen{}eq\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]\mcdot{}
THEN Auto)
Home
Index