Step * of Lemma fset-constrained-ac-lub-is-lub

[T:Type]. ∀[eq:EqDecider(T)]. ∀[P:fset(T) ⟶ 𝔹]. ∀[ac1,ac2:{ac:fset(fset(T))| 
                                                             (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.P[a])} ].
  least-upper-bound({ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.P[a])} ;ac1,ac2.fset-ac-le(eq;ac1;ac2);
                    ac1;ac2;lub(P;ac1;ac2))
BY
(InstLemma `fset-ac-lub-is-lub-constrained` [] THEN Unfold `fset-constrained-ac-lub` THEN Trivial) }


Latex:


Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[P:fset(T)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[ac1,ac2:\{ac:fset(fset(T))| 
                                                                                                                          (\muparrow{}fset-antichain(eq;ac))
                                                                                                                          \mwedge{}  fset-all(ac;a.P[a])\}  ].
    least-upper-bound(\{ac:fset(fset(T))|  (\muparrow{}fset-antichain(eq;ac))  \mwedge{}  fset-all(ac;a.P[a])\}  ;
                                        ac1,ac2.fset-ac-le(eq;ac1;ac2);ac1;ac2;lub(P;ac1;ac2))


By


Latex:
(InstLemma  `fset-ac-lub-is-lub-constrained`  []  THEN  Unfold  `fset-constrained-ac-lub`  0  THEN  Trivial)




Home Index