Step * 1 of Lemma fset-to-list


1. [T] Type
2. eq EqDecider(T)
3. [R] T ⟶ T ⟶ ℙ
4. ∀a,b:T.  Dec(R b)
5. Linorder(T;a,b.R b)
6. fset(T)
7. ∀L:T List. ∃L':T List. (sorted-by(R;L') ∧ no_repeats(T;L') ∧ L ⊆ L' ∧ L' ⊆ L)
8. sort L:(T List) ⟶ (T List)
9. ∀L:T List. (sorted-by(R;sort L) ∧ no_repeats(T;sort L) ∧ L ⊆ sort L ∧ sort L ⊆ L)
⊢ ∃L:T List. ∀x:T. (x ∈ ⇐⇒ (x ∈ L))
BY
Assert ⌜sort s ∈ List⌝⋅ }

1
.....assertion..... 
1. [T] Type
2. eq EqDecider(T)
3. [R] T ⟶ T ⟶ ℙ
4. ∀a,b:T.  Dec(R b)
5. Linorder(T;a,b.R b)
6. fset(T)
7. ∀L:T List. ∃L':T List. (sorted-by(R;L') ∧ no_repeats(T;L') ∧ L ⊆ L' ∧ L' ⊆ L)
8. sort L:(T List) ⟶ (T List)
9. ∀L:T List. (sorted-by(R;sort L) ∧ no_repeats(T;sort L) ∧ L ⊆ sort L ∧ sort L ⊆ L)
⊢ sort s ∈ List

2
1. [T] Type
2. eq EqDecider(T)
3. [R] T ⟶ T ⟶ ℙ
4. ∀a,b:T.  Dec(R b)
5. Linorder(T;a,b.R b)
6. fset(T)
7. ∀L:T List. ∃L':T List. (sorted-by(R;L') ∧ no_repeats(T;L') ∧ L ⊆ L' ∧ L' ⊆ L)
8. sort L:(T List) ⟶ (T List)
9. ∀L:T List. (sorted-by(R;sort L) ∧ no_repeats(T;sort L) ∧ L ⊆ sort L ∧ sort L ⊆ L)
10. sort s ∈ List
⊢ ∃L:T List. ∀x:T. (x ∈ ⇐⇒ (x ∈ L))


Latex:


Latex:

1.  [T]  :  Type
2.  eq  :  EqDecider(T)
3.  [R]  :  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}
4.  \mforall{}a,b:T.    Dec(R  a  b)
5.  Linorder(T;a,b.R  a  b)
6.  s  :  fset(T)
7.  \mforall{}L:T  List.  \mexists{}L':T  List.  (sorted-by(R;L')  \mwedge{}  no\_repeats(T;L')  \mwedge{}  L  \msubseteq{}  L'  \mwedge{}  L'  \msubseteq{}  L)
8.  sort  :  L:(T  List)  {}\mrightarrow{}  (T  List)
9.  \mforall{}L:T  List.  (sorted-by(R;sort  L)  \mwedge{}  no\_repeats(T;sort  L)  \mwedge{}  L  \msubseteq{}  sort  L  \mwedge{}  sort  L  \msubseteq{}  L)
\mvdash{}  \mexists{}L:T  List.  \mforall{}x:T.  (x  \mmember{}  s  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L))


By


Latex:
Assert  \mkleeneopen{}sort  s  \mmember{}  T  List\mkleeneclose{}\mcdot{}




Home Index