Step
*
1
1
of Lemma
disjoint_increasing_onto
.....assertion.....
1. m : ℕ
2. n : ℕ
3. k : ℕ
4. f : ℕn ⟶ ℕm
5. g : ℕk ⟶ ℕm
6. increasing(f;n)
7. increasing(g;k)
8. ∀i:ℕm. ((∃j:ℕn. (i = (f j) ∈ ℤ)) ∨ (∃j:ℕk. (i = (g j) ∈ ℤ)))
9. ∀j1:ℕn. ∀j2:ℕk. (¬((f j1) = (g j2) ∈ ℤ))
⊢ m ≤ (n + k)
BY
{ (BackThruLemma `injection_le` THEN Auto') }
1
1. m : ℕ
2. n : ℕ
3. k : ℕ
4. f : ℕn ⟶ ℕm
5. g : ℕk ⟶ ℕm
6. increasing(f;n)
7. increasing(g;k)
8. ∀i:ℕm. ((∃j:ℕn. (i = (f j) ∈ ℤ)) ∨ (∃j:ℕk. (i = (g j) ∈ ℤ)))
9. ∀j1:ℕn. ∀j2:ℕk. (¬((f j1) = (g j2) ∈ ℤ))
⊢ ∃f:ℕm ⟶ ℕn + k. Inj(ℕm;ℕn + k;f)
Latex:
Latex:
.....assertion.....
1. m : \mBbbN{}
2. n : \mBbbN{}
3. k : \mBbbN{}
4. f : \mBbbN{}n {}\mrightarrow{} \mBbbN{}m
5. g : \mBbbN{}k {}\mrightarrow{} \mBbbN{}m
6. increasing(f;n)
7. increasing(g;k)
8. \mforall{}i:\mBbbN{}m. ((\mexists{}j:\mBbbN{}n. (i = (f j))) \mvee{} (\mexists{}j:\mBbbN{}k. (i = (g j))))
9. \mforall{}j1:\mBbbN{}n. \mforall{}j2:\mBbbN{}k. (\mneg{}((f j1) = (g j2)))
\mvdash{} m \mleq{} (n + k)
By
Latex:
(BackThruLemma `injection\_le` THEN Auto')
Home
Index