Step
*
of Lemma
colist-cases
∀[T:Type]. ∀x:colist(T). ((x ~ Ax) ∨ (x ∈ T × colist(T)))
BY
{ TACTIC:(InstLemma `colist-ext` []
THEN ParallelLast'
THEN D -1
THEN (D 0 THENA Auto)
THEN UseWitness ⌜isaxiom(x)⌝⋅
THEN (SubsumeHyp ⌜Unit ⋃ (T × colist(T))⌝ (-1)⋅ THENA Auto)
THEN D_b_union (-1)
THEN D -1
THEN RepUR ``btrue bfalse it`` 0
THEN MemCD
THEN Try (Complete (Auto))) }
1
.....eq aux.....
1. T : Type
2. colist(T) ⊆r (Unit ⋃ (T × colist(T)))
3. (Unit ⋃ (T × colist(T))) ⊆r colist(T)
4. a2 : T
5. a3 : colist(T)
⊢ istype(<a2, a3> ~ Ax)
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}x:colist(T). ((x \msim{} Ax) \mvee{} (x \mmember{} T \mtimes{} colist(T)))
By
Latex:
TACTIC:(InstLemma `colist-ext` []
THEN ParallelLast'
THEN D -1
THEN (D 0 THENA Auto)
THEN UseWitness \mkleeneopen{}isaxiom(x)\mkleeneclose{}\mcdot{}
THEN (SubsumeHyp \mkleeneopen{}Unit \mcup{} (T \mtimes{} colist(T))\mkleeneclose{} (-1)\mcdot{} THENA Auto)
THEN D\_b\_union (-1)
THEN D -1
THEN RepUR ``btrue bfalse it`` 0
THEN MemCD
THEN Try (Complete (Auto)))
Home
Index