Step
*
of Lemma
l-ind-sqequal-list_ind
∀[L,x,F:Top]. (l-ind(L;x;h,t,r.F[h;t;r]) ~ rec-case(L) of [] => x | h::t => r.F[h;t;r])
BY
{ (MutualFixpointInduction1 `L'
THEN Reduce 0
THEN RW (AddrC [2] RecUnfoldTopAbC) 0
THEN UseCbvSqle
THEN Try (Complete (RepeatFor 2 (HVimplies2 0 [1])))
THEN RepeatFor 2 (HVimplies2 0 [2])
THEN (RWO "-2 -1" 0 THENA Auto)) }
1
1. j : ℤ
2. 0 < j
3. ∀F,x,L:Base.
(λl-ind,L. eval v = L in if v = Ax then x otherwise let h,t = v in F[h;t;l-ind t]^j - 1 ⊥ L ≤ rec-case(L) of
[] => x
h::t =>
r.F[h;t;r])
4. F : Base
5. x : Base
6. L : Base
7. (L)↓
8. ∀a,b:Top. (if L is a pair then a otherwise b ~ b)
9. ∀a,b:Top. (if L = Ax then a otherwise b ~ b)
⊢ let h,t = L
in F[h;t;λl-ind,L. eval v = L in if v = Ax then x otherwise let h,t = v in F[h;t;l-ind t]^j - 1 ⊥ t] ≤ ⊥
Latex:
Latex:
\mforall{}[L,x,F:Top]. (l-ind(L;x;h,t,r.F[h;t;r]) \msim{} rec-case(L) of [] => x | h::t => r.F[h;t;r])
By
Latex:
(MutualFixpointInduction1 `L'
THEN Reduce 0
THEN RW (AddrC [2] RecUnfoldTopAbC) 0
THEN UseCbvSqle
THEN Try (Complete (RepeatFor 2 (HVimplies2 0 [1])))
THEN RepeatFor 2 (HVimplies2 0 [2])
THEN (RWO "-2 -1" 0 THENA Auto))
Home
Index