Step
*
1
1
2
of Lemma
select_listify_id
1. T : Type
2. n : ℕ
3. f : ℕn ⟶ T
4. j : {...n - 1}@i
5. (0 ≤ (j + 1))
⇒ (∀i:{j + 1..n-}. (listify(f;j + 1;n)[i - j + 1] = (f i) ∈ T))
6. 0 ≤ j
7. i : {j..n-}@i
⊢ listify(f;j;n)[i - j] = (f i) ∈ T
BY
{ (RecCaseSplit `listify` THEN Auto) }
1
.....falsecase.....
1. T : Type
2. n : ℕ
3. f : ℕn ⟶ T
4. j : {...n - 1}@i
5. (0 ≤ (j + 1))
⇒ (∀i:{j + 1..n-}. (listify(f;j + 1;n)[i - j + 1] = (f i) ∈ T))
6. 0 ≤ j
7. i : {j..n-}@i
8. j < n
⊢ [f j / listify(f;j + 1;n)][i - j] = (f i) ∈ T
Latex:
Latex:
1. T : Type
2. n : \mBbbN{}
3. f : \mBbbN{}n {}\mrightarrow{} T
4. j : \{...n - 1\}@i
5. (0 \mleq{} (j + 1)) {}\mRightarrow{} (\mforall{}i:\{j + 1..n\msupminus{}\}. (listify(f;j + 1;n)[i - j + 1] = (f i)))
6. 0 \mleq{} j
7. i : \{j..n\msupminus{}\}@i
\mvdash{} listify(f;j;n)[i - j] = (f i)
By
Latex:
(RecCaseSplit `listify` THEN Auto)
Home
Index