Step
*
2
1
of Lemma
bar-induction
1. T : Type
2. R : (T List) ⟶ ℙ
3. A : (T List) ⟶ ℙ
4. ∀s:T List. Dec(R s)
5. ∀s:T List. ((R s) 
⇒ (A s))
6. ∀s:T List. ((∀t:T. (A (s @ [t]))) 
⇒ (A s))
7. s : T List
8. ∀alpha:ℕ ⟶ T. (↓∃n:ℕ. (R (s @ map(alpha;upto(n)))))
9. ∀n:ℕ. ∀s:ℕn ⟶ T.  ((∀alpha:ℕ ⟶ T. (↓∃m:ℕ. (R map(seq-append(n;m;s;alpha);upto(n + m))))) 
⇒ (A map(s;upto(n))))
10. alpha : ℕ ⟶ T
⊢ ↓∃m:ℕ. (R map(seq-append(||s||;m;λi.s[i];alpha);upto(||s|| + m)))
BY
{ ((InstHyp [⌜alpha⌝] (-3)⋅ THENA Auto) THEN RepeatFor 2 (ParallelLast) THEN NthHypEq (-1) THEN EqCD THEN Auto) }
1
.....subterm..... T:t
2:n
1. T : Type
2. R : (T List) ⟶ ℙ
3. A : (T List) ⟶ ℙ
4. ∀s:T List. Dec(R s)
5. ∀s:T List. ((R s) 
⇒ (A s))
6. ∀s:T List. ((∀t:T. (A (s @ [t]))) 
⇒ (A s))
7. s : T List
8. ∀alpha:ℕ ⟶ T. (↓∃n:ℕ. (R (s @ map(alpha;upto(n)))))
9. ∀n:ℕ. ∀s:ℕn ⟶ T.  ((∀alpha:ℕ ⟶ T. (↓∃m:ℕ. (R map(seq-append(n;m;s;alpha);upto(n + m))))) 
⇒ (A map(s;upto(n))))
10. alpha : ℕ ⟶ T
11. n : ℕ
12. R (s @ map(alpha;upto(n)))
⊢ map(seq-append(||s||;n;λi.s[i];alpha);upto(||s|| + n)) = (s @ map(alpha;upto(n))) ∈ (T List)
Latex:
Latex:
1.  T  :  Type
2.  R  :  (T  List)  {}\mrightarrow{}  \mBbbP{}
3.  A  :  (T  List)  {}\mrightarrow{}  \mBbbP{}
4.  \mforall{}s:T  List.  Dec(R  s)
5.  \mforall{}s:T  List.  ((R  s)  {}\mRightarrow{}  (A  s))
6.  \mforall{}s:T  List.  ((\mforall{}t:T.  (A  (s  @  [t])))  {}\mRightarrow{}  (A  s))
7.  s  :  T  List
8.  \mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  T.  (\mdownarrow{}\mexists{}n:\mBbbN{}.  (R  (s  @  map(alpha;upto(n)))))
9.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  T.
          ((\mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  T.  (\mdownarrow{}\mexists{}m:\mBbbN{}.  (R  map(seq-append(n;m;s;alpha);upto(n  +  m)))))  {}\mRightarrow{}  (A  map(s;upto(n))))
10.  alpha  :  \mBbbN{}  {}\mrightarrow{}  T
\mvdash{}  \mdownarrow{}\mexists{}m:\mBbbN{}.  (R  map(seq-append(||s||;m;\mlambda{}i.s[i];alpha);upto(||s||  +  m)))
By
Latex:
((InstHyp  [\mkleeneopen{}alpha\mkleeneclose{}]  (-3)\mcdot{}  THENA  Auto)
  THEN  RepeatFor  2  (ParallelLast)
  THEN  NthHypEq  (-1)
  THEN  EqCD
  THEN  Auto)
Home
Index