Step
*
of Lemma
basic-bar-induction
∀[T:Type]. ∀[R,A:(T List) ⟶ ℙ].
((∀s:T List. Dec(R[s]))
⇒ (∀s:T List. (R[s]
⇒ A[s]))
⇒ (∀s:T List. ((∀t:T. A[s @ [t]])
⇒ A[s]))
⇒ (∀alpha:ℕ ⟶ T. (↓∃n:ℕ. R[map(alpha;upto(n))]))
⇒ A[[]])
BY
{ ((InstLemma Obid: bar-induction) []⋅ THEN RepeatFor 6 ((ParallelLast' THENA Auto)) THEN Auto) }
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[R,A:(T List) {}\mrightarrow{} \mBbbP{}].
((\mforall{}s:T List. Dec(R[s]))
{}\mRightarrow{} (\mforall{}s:T List. (R[s] {}\mRightarrow{} A[s]))
{}\mRightarrow{} (\mforall{}s:T List. ((\mforall{}t:T. A[s @ [t]]) {}\mRightarrow{} A[s]))
{}\mRightarrow{} (\mforall{}alpha:\mBbbN{} {}\mrightarrow{} T. (\mdownarrow{}\mexists{}n:\mBbbN{}. R[map(alpha;upto(n))]))
{}\mRightarrow{} A[[]])
By
Latex:
((InstLemma Obid: bar-induction) []\mcdot{} THEN RepeatFor 6 ((ParallelLast' THENA Auto)) THEN Auto)
Home
Index