Step
*
2
1
1
2
of Lemma
comparison-max_wf
1. T : Type
2. cmp : comparison(T)
3. valueall-type(T)
4. u : T
5. v : T List
6. eager-accum(mx,x.if 0 ≤z cmp x mx then mx else x fi ;u;v)
= eager-accum(mx,x.if 0 ≤z cmp x mx then mx else x fi ;u;v)
∈ {mx:T| ((mx = u ∈ T) ∨ (mx ∈ v)) ∧ (0 ≤ (cmp u mx)) ∧ (∀x∈v.0 ≤ (cmp x mx))}
⊢ {mx:T| ((mx = u ∈ T) ∨ (mx ∈ v)) ∧ (0 ≤ (cmp u mx)) ∧ (∀x∈v.0 ≤ (cmp x mx))} ⊆r {mx:T|
(mx ∈ [u / v])
∧ (∀x∈[u / v].0 ≤ (cmp x mx))}
BY
{ ((D 0 THENA Auto) THEN D -1 THEN MemTypeCD THEN Auto) }
Latex:
Latex:
1. T : Type
2. cmp : comparison(T)
3. valueall-type(T)
4. u : T
5. v : T List
6. eager-accum(mx,x.if 0 \mleq{}z cmp x mx then mx else x fi ;u;v)
= eager-accum(mx,x.if 0 \mleq{}z cmp x mx then mx else x fi ;u;v)
\mvdash{} \{mx:T| ((mx = u) \mvee{} (mx \mmember{} v)) \mwedge{} (0 \mleq{} (cmp u mx)) \mwedge{} (\mforall{}x\mmember{}v.0 \mleq{} (cmp x mx))\} \msubseteq{}r \{mx:T|
(mx \mmember{} [u / v])
\mwedge{} (\mforall{}x\mmember{}[u / v].
0 \mleq{} (cmp x
mx))\}
By
Latex:
((D 0 THENA Auto) THEN D -1 THEN MemTypeCD THEN Auto)
Home
Index