Step
*
2
of Lemma
cons-sub-co-list-cons
1. [T] : Type
2. x1 : T
3. x2 : T
4. L1 : colist(T)
5. L2 : colist(T)
6. ((x1 = x2 ∈ T) ∧ sub-co-list(T;L1;L2)) ∨ sub-co-list(T;[x1 / L1];L2)
⊢ sub-co-list(T;[x1 / L1];[x2 / L2])
BY
{ (D -1 THEN ExRepD THEN D -1) }
1
1. [T] : Type
2. x1 : T
3. x2 : T
4. L1 : colist(T)
5. L2 : colist(T)
6. x1 = x2 ∈ T
7. ns : colist(ℕ)
8. L1 = L2@ns ∈ colist(T)
⊢ sub-co-list(T;[x1 / L1];[x2 / L2])
2
1. [T] : Type
2. x1 : T
3. x2 : T
4. L1 : colist(T)
5. L2 : colist(T)
6. ns : colist(ℕ)
7. [x1 / L1] = L2@ns ∈ colist(T)
⊢ sub-co-list(T;[x1 / L1];[x2 / L2])
Latex:
Latex:
1. [T] : Type
2. x1 : T
3. x2 : T
4. L1 : colist(T)
5. L2 : colist(T)
6. ((x1 = x2) \mwedge{} sub-co-list(T;L1;L2)) \mvee{} sub-co-list(T;[x1 / L1];L2)
\mvdash{} sub-co-list(T;[x1 / L1];[x2 / L2])
By
Latex:
(D -1 THEN ExRepD THEN D -1)
Home
Index