Step * 1 of Lemma cycle-decomp


1. : ℕ
2. {f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} 
3. orbits : ℕList List
4. ∀orbit:ℕList
     ((orbit ∈ orbits)
      (0 < ||orbit||
        ∧ no_repeats(ℕn;orbit)
        ∧ (∀i:ℕ||orbit||. ((f orbit[i]) if (i =z ||orbit|| 1) then orbit[0] else orbit[i 1] fi  ∈ ℕn))
        ∧ (∀x∈orbit.∀n@0:ℕ(f^n@0 x ∈ orbit))))
5. ∀a:ℕn. (∃orbit∈orbits. (a ∈ orbit))
6. (∀o1,o2∈orbits.  l_disjoint(ℕn;o1;o2))
⊢ no_repeats(ℕList;orbits)
BY
((D THEN Auto) THEN ParallelLast) }

1
1. : ℕ
2. {f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} 
3. orbits : ℕList List
4. ∀orbit:ℕList
     ((orbit ∈ orbits)
      (0 < ||orbit||
        ∧ no_repeats(ℕn;orbit)
        ∧ (∀i:ℕ||orbit||. ((f orbit[i]) if (i =z ||orbit|| 1) then orbit[0] else orbit[i 1] fi  ∈ ℕn))
        ∧ (∀x∈orbit.∀n@0:ℕ(f^n@0 x ∈ orbit))))
5. ∀a:ℕn. (∃orbit∈orbits. (a ∈ orbit))
6. (∀o1,o2∈orbits.  l_disjoint(ℕn;o1;o2))
7. : ℕ
8. : ℕ
9. i < ||orbits||
10. j < ||orbits||
11. orbits[i] orbits[j] ∈ (ℕList)
⊢ j ∈ ℕ


Latex:


Latex:

1.  n  :  \mBbbN{}
2.  f  :  \{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\} 
3.  orbits  :  \mBbbN{}n  List  List
4.  \mforall{}orbit:\mBbbN{}n  List
          ((orbit  \mmember{}  orbits)
          {}\mRightarrow{}  (0  <  ||orbit||
                \mwedge{}  no\_repeats(\mBbbN{}n;orbit)
                \mwedge{}  (\mforall{}i:\mBbbN{}||orbit||
                          ((f  orbit[i])  =  if  (i  =\msubz{}  ||orbit||  -  1)  then  orbit[0]  else  orbit[i  +  1]  fi  ))
                \mwedge{}  (\mforall{}x\mmember{}orbit.\mforall{}n@0:\mBbbN{}.  (f\^{}n@0  x  \mmember{}  orbit))))
5.  \mforall{}a:\mBbbN{}n.  (\mexists{}orbit\mmember{}orbits.  (a  \mmember{}  orbit))
6.  (\mforall{}o1,o2\mmember{}orbits.    l\_disjoint(\mBbbN{}n;o1;o2))
\mvdash{}  no\_repeats(\mBbbN{}n  List;orbits)


By


Latex:
((D  0  THEN  Auto)  THEN  ParallelLast)




Home Index