Step
*
of Lemma
cycle-flip-lemma
∀[n:ℕ]. ∀[L:ℕn List].
(cycle(L) = ((hd(L), hd(tl(L))) o cycle(tl(L))) ∈ (ℕn ⟶ ℕn)) supposing (1 < ||L|| and no_repeats(ℕn;L))
BY
{ (Auto THEN (DVar `L' THEN All Reduce THEN Auto') THEN (DVar `v' THEN All Reduce THEN Auto')⋅) }
1
1. n : ℕ
2. u : ℕn
3. u1 : ℕn
4. v : ℕn List
5. no_repeats(ℕn;[u; [u1 / v]])
6. 1 < (||v|| + 1) + 1
⊢ cycle([u; [u1 / v]]) = ((u, u1) o cycle([u1 / v])) ∈ (ℕn ⟶ ℕn)
Latex:
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[L:\mBbbN{}n List].
(cycle(L) = ((hd(L), hd(tl(L))) o cycle(tl(L)))) supposing (1 < ||L|| and no\_repeats(\mBbbN{}n;L))
By
Latex:
(Auto THEN (DVar `L' THEN All Reduce THEN Auto') THEN (DVar `v' THEN All Reduce THEN Auto')\mcdot{})
Home
Index