Step
*
of Lemma
decidable__squash-list-match-aux-ext
∀[A,B:Type]. ∀[R:A ⟶ B ⟶ ℙ].
((∀a:A. ∀b:B. Dec(R[a;b]))
⇒ (∀bs:B List. ∀as:A List. ∀used:ℤ List. Dec(↓list-match-aux(as;bs;used;a,b.R[a;b]))))
BY
{ Extract of Obid: decidable__squash-list-match-aux
not unfolding listops int_seg_decide int-deq deq-member
finishing with Auto
normalizes to:
λdcdr,bs,as. rec-case(as) of
[] => λused.(inl Ax)
a::L =>
r.λused.eval j' = ||bs|| in
if int_seg_decide(λj.if j ∈b used
then inr (λ%.let %4,%5 = %
in Ax)
else case dcdr a bs[j]
of inl(x) =>
case r [j / used]
of inl(y) =>
inl <λ_.Ax, x, y>
| inr(_) =>
inr (λx.let _,_ = x
in Ax)
| inr(_) =>
inr (λx.let _,_ = x
in Ax)
fi ;0;j')
then inl Ax
else inr (λ_.Ax)
fi }
Latex:
Latex:
\mforall{}[A,B:Type]. \mforall{}[R:A {}\mrightarrow{} B {}\mrightarrow{} \mBbbP{}].
((\mforall{}a:A. \mforall{}b:B. Dec(R[a;b]))
{}\mRightarrow{} (\mforall{}bs:B List. \mforall{}as:A List. \mforall{}used:\mBbbZ{} List. Dec(\mdownarrow{}list-match-aux(as;bs;used;a,b.R[a;b]))))
By
Latex:
Extract of Obid: decidable\_\_squash-list-match-aux
not unfolding listops int\_seg\_decide int-deq deq-member
finishing with Auto
normalizes to:
\mlambda{}dcdr,bs,as. rec-case(as) of
[] => \mlambda{}used.(inl Ax)
a::L =>
r.\mlambda{}used.eval j' = ||bs|| in
if int\_seg\_decide(\mlambda{}j.if j \mmember{}\msubb{} used
then inr (\mlambda{}\%.let \%4,\%5 = \%
in Ax)
else case dcdr a bs[j]
of inl(x) =>
case r [j / used]
of inl(y) =>
inl <\mlambda{}$_{}$.Ax, x, y>
| inr($_{}$) =>
inr (\mlambda{}x.let $_{}$,$_\mbackslash{}f\000Cf7b}$ = x
in Ax)
| inr($_{}$) =>
inr (\mlambda{}x.let $_{}$,$_\mbackslash{}ff\000C7b}$ = x
in Ax)
fi ;0;j')
then inl Ax
else inr (\mlambda{}$_{}$.Ax)
fi
Home
Index