Step * 3 1 2 of Lemma first-success-is-inl


1. Type
2. T ⟶ Type
3. x:T ⟶ (A[x]?)
4. T
5. List
6. Unit
7. (f u) (inr ) ∈ (A[u]?)
8. : ℕ||v||
9. x1 A[v[i]]
10. first-success(f;v) (inl <i, x1>) ∈ (i:ℕ||v|| × A[v[i]]?)
11. ∀[j:ℕ||v||]. ∀[a:A[v[j]]].
      ((inl <i, x1>(inl <j, a>) ∈ (i:ℕ||v|| × A[v[i]]?)
      ⇐⇒ j < ||v|| ∧ ((f v[j]) (inl a) ∈ (A[v[j]]?)) ∧ (∀x∈firstn(j;v).↑isr(f x)))
12. : ℕ||v|| 1
13. ¬0 < j
14. A[[u v][j]]
⊢ (inl <1, x1>(inl <j, a>) ∈ (i:ℕ||v|| 1 × A[[u v][i]]?)
⇐⇒ j < ||v|| 1 ∧ ((f [u v][j]) (inl a) ∈ (A[[u v][j]]?)) ∧ (∀x∈[].↑isr(f x))
BY
TACTIC:((Subst' THENA Auto) THEN Reduce 0) }

1
1. Type
2. T ⟶ Type
3. x:T ⟶ (A[x]?)
4. T
5. List
6. Unit
7. (f u) (inr ) ∈ (A[u]?)
8. : ℕ||v||
9. x1 A[v[i]]
10. first-success(f;v) (inl <i, x1>) ∈ (i:ℕ||v|| × A[v[i]]?)
11. ∀[j:ℕ||v||]. ∀[a:A[v[j]]].
      ((inl <i, x1>(inl <j, a>) ∈ (i:ℕ||v|| × A[v[i]]?)
      ⇐⇒ j < ||v|| ∧ ((f v[j]) (inl a) ∈ (A[v[j]]?)) ∧ (∀x∈firstn(j;v).↑isr(f x)))
12. : ℕ||v|| 1
13. ¬0 < j
14. A[[u v][j]]
⊢ (inl <1, x1>(inl <0, a>) ∈ (i:ℕ||v|| 1 × A[[u v][i]]?)
⇐⇒ 0 < ||v|| 1 ∧ ((f u) (inl a) ∈ (A[u]?)) ∧ (∀x∈[].↑isr(f x))


Latex:


Latex:

1.  T  :  Type
2.  A  :  T  {}\mrightarrow{}  Type
3.  f  :  x:T  {}\mrightarrow{}  (A[x]?)
4.  u  :  T
5.  v  :  T  List
6.  y  :  Unit
7.  (f  u)  =  (inr  y  )
8.  i  :  \mBbbN{}||v||
9.  x1  :  A[v[i]]
10.  first-success(f;v)  =  (inl  <i,  x1>)
11.  \mforall{}[j:\mBbbN{}||v||].  \mforall{}[a:A[v[j]]].
            ((inl  <i,  x1>)  =  (inl  <j,  a>)  \mLeftarrow{}{}\mRightarrow{}  j  <  ||v||  \mwedge{}  ((f  v[j])  =  (inl  a))  \mwedge{}  (\mforall{}x\mmember{}firstn(j;v).\muparrow{}isr(f  x)\000C))
12.  j  :  \mBbbN{}||v||  +  1
13.  \mneg{}0  <  j
14.  a  :  A[[u  /  v][j]]
\mvdash{}  (inl  <i  +  1,  x1>)  =  (inl  <j,  a>)  \mLeftarrow{}{}\mRightarrow{}  j  <  ||v||  +  1  \mwedge{}  ((f  [u  /  v][j])  =  (inl  a))  \mwedge{}  (\mforall{}x\mmember{}[].\muparrow{}isr(f  x)\000C)


By


Latex:
TACTIC:((Subst'  j  \msim{}  0  0  THENA  Auto)  THEN  Reduce  0)




Home Index