Step
*
1
1
2
of Lemma
firstn_decomp2
1. T : Type
2. j : ℤ
3. 0 < j
4. ∀[l:T List]. (firstn(j - 1 - 1;l) @ [l[j - 1 - 1]] ~ firstn(j - 1;l)) supposing (((j - 1) ≤ ||l||) and 0 < j - 1)
5. l : T List
6. 0 < j
7. j ≤ ||l||
8. j = 1 ∈ ℤ
⊢ firstn(0;[hd(l) / tl(l)]) @ [[hd(l) / tl(l)][0]] ~ firstn(1;[hd(l) / tl(l)])
BY
{ (RecUnfold `firstn` 0 THEN Reduce 0) }
1
1. T : Type
2. j : ℤ
3. 0 < j
4. ∀[l:T List]. (firstn(j - 1 - 1;l) @ [l[j - 1 - 1]] ~ firstn(j - 1;l)) supposing (((j - 1) ≤ ||l||) and 0 < j - 1)
5. l : T List
6. 0 < j
7. j ≤ ||l||
8. j = 1 ∈ ℤ
⊢ [hd(l)] ~ [hd(l) / firstn(0;tl(l))]
Latex:
Latex:
1. T : Type
2. j : \mBbbZ{}
3. 0 < j
4. \mforall{}[l:T List]
(firstn(j - 1 - 1;l) @ [l[j - 1 - 1]] \msim{} firstn(j - 1;l)) supposing
(((j - 1) \mleq{} ||l||) and
0 < j - 1)
5. l : T List
6. 0 < j
7. j \mleq{} ||l||
8. j = 1
\mvdash{} firstn(0;[hd(l) / tl(l)]) @ [[hd(l) / tl(l)][0]] \msim{} firstn(1;[hd(l) / tl(l)])
By
Latex:
(RecUnfold `firstn` 0 THEN Reduce 0)
Home
Index