Step
*
1
of Lemma
has-value-l-last-default-list
1. j : ℤ
2. 0 < j
3. ∀l,d:Base.
((λlist_ind,L. eval v = L in
if v is a pair then let h,t = v
in λx.(list_ind t h) otherwise if v = Ax then λx.x otherwise ⊥^j - 1
⊥
l
d)↓
⇒ (l ∈ Top List))
4. l : Base@i
5. d : Base@i
6. (λlist_ind,L. eval v = L in
if v is a pair then let h,t = v
in λx.(list_ind t h) otherwise if v = Ax then λx.x otherwise ⊥^j - 1
⊥
(snd(l))
(fst(l)))↓@i
7. 0 ≤ 0
8. 0 ≤ 0
9. l ~ <fst(l), snd(l)>
⊢ <fst(l), snd(l)> ∈ Top List
BY
{ (Fold `cons` 0 THEN Auto) }
Latex:
Latex:
1. j : \mBbbZ{}
2. 0 < j
3. \mforall{}l,d:Base.
((\mlambda{}list$_{ind}$,L. eval v = L in
if v is a pair then let h,t = v
in \mlambda{}x.(list$_{ind}$ t h) otherwise if v =\000C Ax then \mlambda{}x.x otherwise \mbot{}\^{}j - 1
\mbot{}
l
d)\mdownarrow{}
{}\mRightarrow{} (l \mmember{} Top List))
4. l : Base@i
5. d : Base@i
6. (\mlambda{}list$_{ind}$,L. eval v = L in
if v is a pair then let h,t = v
in \mlambda{}x.(list$_{ind}$ t h) otherwise if v = Ax\000C then \mlambda{}x.x otherwise \mbot{}\^{}j - 1
\mbot{}
(snd(l))
(fst(l)))\mdownarrow{}@i
7. 0 \mleq{} 0
8. 0 \mleq{} 0
9. l \msim{} <fst(l), snd(l)>
\mvdash{} <fst(l), snd(l)> \mmember{} Top List
By
Latex:
(Fold `cons` 0 THEN Auto)
Home
Index