Step
*
2
1
of Lemma
iseg_select
1. [T] : Type
2. u : T@i
3. v : T List@i
4. ∀l2:T List. (v ≤ l2
⇐⇒ (||v|| ≤ ||l2||) c∧ (∀i:ℕ. v[i] = l2[i] ∈ T supposing i < ||v||))
⊢ [u / v] ≤ []
⇐⇒ (||[u / v]|| ≤ ||[]||) c∧ (∀i:ℕ. [u / v][i] = [][i] ∈ T supposing i < ||[u / v]||)
BY
{ (((Reduce 0 THEN D 0) THEN D 0) THENA Auto) }
1
1. [T] : Type
2. u : T@i
3. v : T List@i
4. ∀l2:T List. (v ≤ l2
⇐⇒ (||v|| ≤ ||l2||) c∧ (∀i:ℕ. v[i] = l2[i] ∈ T supposing i < ||v||))
5. [u / v] ≤ []
⊢ ((||v|| + 1) ≤ 0) c∧ (∀i:ℕ. [u / v][i] = ⊥ ∈ T supposing i < ||v|| + 1)
2
1. [T] : Type
2. u : T@i
3. v : T List@i
4. ∀l2:T List. (v ≤ l2
⇐⇒ (||v|| ≤ ||l2||) c∧ (∀i:ℕ. v[i] = l2[i] ∈ T supposing i < ||v||))
5. ((||v|| + 1) ≤ 0) c∧ (∀i:ℕ. [u / v][i] = ⊥ ∈ T supposing i < ||v|| + 1)
⊢ [u / v] ≤ []
Latex:
Latex:
1. [T] : Type
2. u : T@i
3. v : T List@i
4. \mforall{}l2:T List. (v \mleq{} l2 \mLeftarrow{}{}\mRightarrow{} (||v|| \mleq{} ||l2||) c\mwedge{} (\mforall{}i:\mBbbN{}. v[i] = l2[i] supposing i < ||v||))
\mvdash{} [u / v] \mleq{} [] \mLeftarrow{}{}\mRightarrow{} (||[u / v]|| \mleq{} ||[]||) c\mwedge{} (\mforall{}i:\mBbbN{}. [u / v][i] = [][i] supposing i < ||[u / v]||)
By
Latex:
(((Reduce 0 THEN D 0) THEN D 0) THENA Auto)
Home
Index