Step
*
2
2
2
of Lemma
iseg_select
1. [T] : Type
2. u : T@i
3. v : T List@i
4. ∀l2:T List. (v ≤ l2
⇐⇒ (||v|| ≤ ||l2||) c∧ (∀i:ℕ. v[i] = l2[i] ∈ T supposing i < ||v||))
5. u1 : T@i
6. v1 : T List@i
7. [u / v] ≤ v1
⇐⇒ (||[u / v]|| ≤ ||v1||) c∧ (∀i:ℕ. [u / v][i] = v1[i] ∈ T supposing i < ||[u / v]||)
8. ((||v|| + 1) ≤ (||v1|| + 1)) c∧ (∀i:ℕ. [u / v][i] = [u1 / v1][i] ∈ T supposing i < ||v|| + 1)
⊢ [u / v] ≤ [u1 / v1]
BY
{ ((D (-1) THEN RWW "cons_iseg" 0) THEN Auto) }
1
1. T : Type
2. u : T@i
3. v : T List@i
4. ∀l2:T List. (v ≤ l2
⇐⇒ (||v|| ≤ ||l2||) c∧ (∀i:ℕ. v[i] = l2[i] ∈ T supposing i < ||v||))
5. u1 : T@i
6. v1 : T List@i
7. [u / v] ≤ v1
⇒ ((||[u / v]|| ≤ ||v1||) c∧ (∀i:ℕ. [u / v][i] = v1[i] ∈ T supposing i < ||[u / v]||))
8. [u / v] ≤ v1
⇐ (||[u / v]|| ≤ ||v1||) c∧ (∀i:ℕ. [u / v][i] = v1[i] ∈ T supposing i < ||[u / v]||)
9. (||v|| + 1) ≤ (||v1|| + 1)
10. ∀i:ℕ. [u / v][i] = [u1 / v1][i] ∈ T supposing i < ||v|| + 1
⊢ u = u1 ∈ T
2
1. [T] : Type
2. u : T@i
3. v : T List@i
4. ∀l2:T List. (v ≤ l2
⇐⇒ (||v|| ≤ ||l2||) c∧ (∀i:ℕ. v[i] = l2[i] ∈ T supposing i < ||v||))
5. u1 : T@i
6. v1 : T List@i
7. [u / v] ≤ v1
⇒ ((||[u / v]|| ≤ ||v1||) c∧ (∀i:ℕ. [u / v][i] = v1[i] ∈ T supposing i < ||[u / v]||))
8. [u / v] ≤ v1
⇐ (||[u / v]|| ≤ ||v1||) c∧ (∀i:ℕ. [u / v][i] = v1[i] ∈ T supposing i < ||[u / v]||)
9. (||v|| + 1) ≤ (||v1|| + 1)
10. ∀i:ℕ. [u / v][i] = [u1 / v1][i] ∈ T supposing i < ||v|| + 1
11. u = u1 ∈ T
⊢ v ≤ v1
Latex:
Latex:
1. [T] : Type
2. u : T@i
3. v : T List@i
4. \mforall{}l2:T List. (v \mleq{} l2 \mLeftarrow{}{}\mRightarrow{} (||v|| \mleq{} ||l2||) c\mwedge{} (\mforall{}i:\mBbbN{}. v[i] = l2[i] supposing i < ||v||))
5. u1 : T@i
6. v1 : T List@i
7. [u / v] \mleq{} v1 \mLeftarrow{}{}\mRightarrow{} (||[u / v]|| \mleq{} ||v1||) c\mwedge{} (\mforall{}i:\mBbbN{}. [u / v][i] = v1[i] supposing i < ||[u / v]||)
8. ((||v|| + 1) \mleq{} (||v1|| + 1)) c\mwedge{} (\mforall{}i:\mBbbN{}. [u / v][i] = [u1 / v1][i] supposing i < ||v|| + 1)
\mvdash{} [u / v] \mleq{} [u1 / v1]
By
Latex:
((D (-1) THEN RWW "cons\_iseg" 0) THEN Auto)
Home
Index