Step
*
1
2
1
of Lemma
isl-apply-alist
1. [A] : Type
2. [T] : Type
3. eq : EqDecider(T)
4. x : T
5. L : (T × A) List
6. apply-alist(eq;L;x) ~ ff supposing ¬(x ∈ map(λp.(fst(p));L))
7. ∀[i:ℕ||L||]
     (apply-alist(eq;L;x) ~ inl (snd(L[i]))) supposing (((fst(L[i])) = x ∈ T) and (∀j:ℕi. (¬((fst(L[j])) = x ∈ T))))
8. ∀a,b:T.  Dec(a = b ∈ T)
9. (x ∈ map(λp.(fst(p));L))
10. i : ℕ||L||
11. (fst(L[i])) = x ∈ T
12. ∀j:ℕi. (¬((fst(L[j])) = x ∈ T))
13. apply-alist(eq;L;x) ~ inl (snd(L[i]))
14. True 
⇐ (x ∈ map(λp.(fst(p));L))
15. True
16. (x ∈ map(λp.(fst(p));L))
⊢ (<x, snd(L[i])> ∈ L)
BY
{ (RevHypSubst (-6) 0 THEN Auto) }
Latex:
Latex:
1.  [A]  :  Type
2.  [T]  :  Type
3.  eq  :  EqDecider(T)
4.  x  :  T
5.  L  :  (T  \mtimes{}  A)  List
6.  apply-alist(eq;L;x)  \msim{}  ff  supposing  \mneg{}(x  \mmember{}  map(\mlambda{}p.(fst(p));L))
7.  \mforall{}[i:\mBbbN{}||L||]
          (apply-alist(eq;L;x)  \msim{}  inl  (snd(L[i])))  supposing 
                (((fst(L[i]))  =  x)  and 
                (\mforall{}j:\mBbbN{}i.  (\mneg{}((fst(L[j]))  =  x))))
8.  \mforall{}a,b:T.    Dec(a  =  b)
9.  (x  \mmember{}  map(\mlambda{}p.(fst(p));L))
10.  i  :  \mBbbN{}||L||
11.  (fst(L[i]))  =  x
12.  \mforall{}j:\mBbbN{}i.  (\mneg{}((fst(L[j]))  =  x))
13.  apply-alist(eq;L;x)  \msim{}  inl  (snd(L[i]))
14.  True  \mLeftarrow{}{}  (x  \mmember{}  map(\mlambda{}p.(fst(p));L))
15.  True
16.  (x  \mmember{}  map(\mlambda{}p.(fst(p));L))
\mvdash{}  (<x,  snd(L[i])>  \mmember{}  L)
By
Latex:
(RevHypSubst  (-6)  0  THEN  Auto)
Home
Index