Step
*
of Lemma
l_all_exists_injection
∀[A,B:Type]. ∀[R:A ⟶ B ⟶ ℙ]. ∀[P:B ⟶ ℙ].
∀L:A List
((∀x∈L.∃y:B. (R[x;y] ∧ P[y]))
⇒ (∃f:ℕ||L|| ⟶ {y:B| P[y]} . Inj(ℕ||L||;{y:B| P[y]} ;f))) supposing
(no_repeats(A;L) and
(∀x1,x2:A. ∀y:B. (R[x1;y]
⇒ R[x2;y]
⇒ (x1 = x2 ∈ A))))
BY
{ (Auto THEN Unfold `l_all` -1) }
1
1. [A] : Type
2. [B] : Type
3. [R] : A ⟶ B ⟶ ℙ
4. [P] : B ⟶ ℙ
5. L : A List
6. ∀x1,x2:A. ∀y:B. (R[x1;y]
⇒ R[x2;y]
⇒ (x1 = x2 ∈ A))
7. no_repeats(A;L)
8. ∀i:ℕ||L||. ∃y:B. (R[L[i];y] ∧ P[y])
⊢ ∃f:ℕ||L|| ⟶ {y:B| P[y]} . Inj(ℕ||L||;{y:B| P[y]} ;f)
Latex:
Latex:
\mforall{}[A,B:Type]. \mforall{}[R:A {}\mrightarrow{} B {}\mrightarrow{} \mBbbP{}]. \mforall{}[P:B {}\mrightarrow{} \mBbbP{}].
\mforall{}L:A List
((\mforall{}x\mmember{}L.\mexists{}y:B. (R[x;y] \mwedge{} P[y])) {}\mRightarrow{} (\mexists{}f:\mBbbN{}||L|| {}\mrightarrow{} \{y:B| P[y]\} . Inj(\mBbbN{}||L||;\{y:B| P[y]\} ;f))) suppos\000Cing
(no\_repeats(A;L) and
(\mforall{}x1,x2:A. \mforall{}y:B. (R[x1;y] {}\mRightarrow{} R[x2;y] {}\mRightarrow{} (x1 = x2))))
By
Latex:
(Auto THEN Unfold `l\_all` -1)
Home
Index