Step
*
of Lemma
l_disjoint_from-upto
∀[L:ℤ List]. ∀n1:ℤ. ∀[n2:ℤ]. uiff(∀x:ℤ. ((x ∈ L) 
⇒ (x < n1 ∨ (x ≥ n2 )));l_disjoint(ℤ;L;[n1, n2)))
BY
{ ((UnivCD THENA Auto) THEN D 0 THEN Auto) }
1
1. L : ℤ List
2. n1 : ℤ@i
3. n2 : ℤ
4. ∀x:ℤ. ((x ∈ L) 
⇒ (x < n1 ∨ (x ≥ n2 )))
⊢ l_disjoint(ℤ;L;[n1, n2))
2
1. [L] : ℤ List
2. n1 : ℤ@i
3. [n2] : ℤ
4. l_disjoint(ℤ;L;[n1, n2))
5. x : ℤ@i
6. (x ∈ L)@i
⊢ x < n1 ∨ (x ≥ n2 )
Latex:
Latex:
\mforall{}[L:\mBbbZ{}  List].  \mforall{}n1:\mBbbZ{}.  \mforall{}[n2:\mBbbZ{}].  uiff(\mforall{}x:\mBbbZ{}.  ((x  \mmember{}  L)  {}\mRightarrow{}  (x  <  n1  \mvee{}  (x  \mgeq{}  n2  )));l\_disjoint(\mBbbZ{};L;[n1,  n2)))
By
Latex:
((UnivCD  THENA  Auto)  THEN  D  0  THEN  Auto)
Home
Index