Nuprl Definition : list-match
list-match(L1;L2;a,b.R[a; b]) == ∃f:ℕ||L1|| ⟶ ℕ||L2|| [(Inj(ℕ||L1||;ℕ||L2||;f) ∧ (∀i:ℕ||L1||. R[L1[i]; L2[f i]]))]
Definitions occuring in Statement :
select: L[n]
,
length: ||as||
,
inject: Inj(A;B;f)
,
int_seg: {i..j-}
,
all: ∀x:A. B[x]
,
sq_exists: ∃x:A [B[x]]
,
and: P ∧ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
natural_number: $n
Definitions occuring in definition :
sq_exists: ∃x:A [B[x]]
,
function: x:A ⟶ B[x]
,
and: P ∧ Q
,
inject: Inj(A;B;f)
,
all: ∀x:A. B[x]
,
int_seg: {i..j-}
,
natural_number: $n
,
length: ||as||
,
select: L[n]
,
apply: f a
FDL editor aliases :
list-match
Latex:
list-match(L1;L2;a,b.R[a; b]) ==
\mexists{}f:\mBbbN{}||L1|| {}\mrightarrow{} \mBbbN{}||L2|| [(Inj(\mBbbN{}||L1||;\mBbbN{}||L2||;f) \mwedge{} (\mforall{}i:\mBbbN{}||L1||. R[L1[i]; L2[f i]]))]
Date html generated:
2018_05_21-PM-00_45_40
Last ObjectModification:
2018_01_17-PM-05_39_37
Theory : list_1
Home
Index