Nuprl Definition : list-match
list-match(L1;L2;a,b.R[a; b]) ==  ∃f:ℕ||L1|| ⟶ ℕ||L2|| [(Inj(ℕ||L1||;ℕ||L2||;f) ∧ (∀i:ℕ||L1||. R[L1[i]; L2[f i]]))]
Definitions occuring in Statement : 
select: L[n], 
length: ||as||, 
inject: Inj(A;B;f), 
int_seg: {i..j-}, 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n
Definitions occuring in definition : 
sq_exists: ∃x:A [B[x]], 
function: x:A ⟶ B[x], 
and: P ∧ Q, 
inject: Inj(A;B;f), 
all: ∀x:A. B[x], 
int_seg: {i..j-}, 
natural_number: $n, 
length: ||as||, 
select: L[n], 
apply: f a
FDL editor aliases : 
list-match
Latex:
list-match(L1;L2;a,b.R[a;  b])  ==
    \mexists{}f:\mBbbN{}||L1||  {}\mrightarrow{}  \mBbbN{}||L2||  [(Inj(\mBbbN{}||L1||;\mBbbN{}||L2||;f)  \mwedge{}  (\mforall{}i:\mBbbN{}||L1||.  R[L1[i];  L2[f  i]]))]
Date html generated:
2018_05_21-PM-00_45_40
Last ObjectModification:
2018_01_17-PM-05_39_37
Theory : list_1
Home
Index