Step * 2 of Lemma list_accum_set-equal


1. Type
2. Type
3. T ⟶ A
4. A ⟶ A ⟶ A
5. Comm(A;λx,y. f[x;y])
6. Assoc(A;λx,y. f[x;y])
7. T
8. List
9. ∀[bs:T List]
     (∀[n:A]
        (accumulate (with value and list item z):
          f[a;g[z]]
         over list:
           v
         with starting value:
          n)
        accumulate (with value and list item z):
           f[a;g[z]]
          over list:
            bs
          with starting value:
           n)
        ∈ A)) supposing 
        (no_repeats(T;bs) and 
        no_repeats(T;v) and 
        set-equal(T;v;bs))
10. bs List
11. set-equal(T;[u v];bs)
12. no_repeats(T;[u v])
13. no_repeats(T;bs)
14. A
⊢ accumulate (with value and list item z):
   f[a;g[z]]
  over list:
    v
  with starting value:
   f[n;g[u]])
accumulate (with value and list item z):
   f[a;g[z]]
  over list:
    bs
  with starting value:
   n)
∈ A
BY
Assert ⌜∃cs,ds:T List. ((bs (cs [u ds]) ∈ (T List)) ∧ set-equal(T;v;cs ds))⌝⋅ }

1
.....assertion..... 
1. Type
2. Type
3. T ⟶ A
4. A ⟶ A ⟶ A
5. Comm(A;λx,y. f[x;y])
6. Assoc(A;λx,y. f[x;y])
7. T
8. List
9. ∀[bs:T List]
     (∀[n:A]
        (accumulate (with value and list item z):
          f[a;g[z]]
         over list:
           v
         with starting value:
          n)
        accumulate (with value and list item z):
           f[a;g[z]]
          over list:
            bs
          with starting value:
           n)
        ∈ A)) supposing 
        (no_repeats(T;bs) and 
        no_repeats(T;v) and 
        set-equal(T;v;bs))
10. bs List
11. set-equal(T;[u v];bs)
12. no_repeats(T;[u v])
13. no_repeats(T;bs)
14. A
⊢ ∃cs,ds:T List. ((bs (cs [u ds]) ∈ (T List)) ∧ set-equal(T;v;cs ds))

2
1. Type
2. Type
3. T ⟶ A
4. A ⟶ A ⟶ A
5. Comm(A;λx,y. f[x;y])
6. Assoc(A;λx,y. f[x;y])
7. T
8. List
9. ∀[bs:T List]
     (∀[n:A]
        (accumulate (with value and list item z):
          f[a;g[z]]
         over list:
           v
         with starting value:
          n)
        accumulate (with value and list item z):
           f[a;g[z]]
          over list:
            bs
          with starting value:
           n)
        ∈ A)) supposing 
        (no_repeats(T;bs) and 
        no_repeats(T;v) and 
        set-equal(T;v;bs))
10. bs List
11. set-equal(T;[u v];bs)
12. no_repeats(T;[u v])
13. no_repeats(T;bs)
14. A
15. ∃cs,ds:T List. ((bs (cs [u ds]) ∈ (T List)) ∧ set-equal(T;v;cs ds))
⊢ accumulate (with value and list item z):
   f[a;g[z]]
  over list:
    v
  with starting value:
   f[n;g[u]])
accumulate (with value and list item z):
   f[a;g[z]]
  over list:
    bs
  with starting value:
   n)
∈ A


Latex:


Latex:

1.  T  :  Type
2.  A  :  Type
3.  g  :  T  {}\mrightarrow{}  A
4.  f  :  A  {}\mrightarrow{}  A  {}\mrightarrow{}  A
5.  Comm(A;\mlambda{}x,y.  f[x;y])
6.  Assoc(A;\mlambda{}x,y.  f[x;y])
7.  u  :  T
8.  v  :  T  List
9.  \mforall{}[bs:T  List]
          (\mforall{}[n:A]
                (accumulate  (with  value  a  and  list  item  z):
                    f[a;g[z]]
                  over  list:
                      v
                  with  starting  value:
                    n)
                =  accumulate  (with  value  a  and  list  item  z):
                      f[a;g[z]]
                    over  list:
                        bs
                    with  starting  value:
                      n)))  supposing 
                (no\_repeats(T;bs)  and 
                no\_repeats(T;v)  and 
                set-equal(T;v;bs))
10.  bs  :  T  List
11.  set-equal(T;[u  /  v];bs)
12.  no\_repeats(T;[u  /  v])
13.  no\_repeats(T;bs)
14.  n  :  A
\mvdash{}  accumulate  (with  value  a  and  list  item  z):
      f[a;g[z]]
    over  list:
        v
    with  starting  value:
      f[n;g[u]])
=  accumulate  (with  value  a  and  list  item  z):
      f[a;g[z]]
    over  list:
        bs
    with  starting  value:
      n)


By


Latex:
Assert  \mkleeneopen{}\mexists{}cs,ds:T  List.  ((bs  =  (cs  @  [u  /  ds]))  \mwedge{}  set-equal(T;v;cs  @  ds))\mkleeneclose{}\mcdot{}




Home Index