Step
*
2
of Lemma
nth_tl-append
1. u : Top
2. v : Top List
3. ∀[bs:Top]. ∀n:ℕ. (nth_tl(n;v @ bs) ~ if n <z ||v|| then nth_tl(n;v) @ bs else nth_tl(n - ||v||;bs) fi )
⊢ ∀[bs:Top]
∀n:ℕ. (nth_tl(n;[u / (v @ bs)]) ~ if n <z ||v|| + 1 then nth_tl(n;[u / v]) @ bs else nth_tl(n - ||v|| + 1;bs) fi )
BY
{ (ParallelLast THEN Auto) }
1
1. u : Top
2. v : Top List
3. [bs] : Top
4. ∀n:ℕ. (nth_tl(n;v @ bs) ~ if n <z ||v|| then nth_tl(n;v) @ bs else nth_tl(n - ||v||;bs) fi )
5. n : ℕ
⊢ nth_tl(n;[u / (v @ bs)]) ~ if n <z ||v|| + 1 then nth_tl(n;[u / v]) @ bs else nth_tl(n - ||v|| + 1;bs) fi
Latex:
Latex:
1. u : Top
2. v : Top List
3. \mforall{}[bs:Top]
\mforall{}n:\mBbbN{}. (nth\_tl(n;v @ bs) \msim{} if n <z ||v|| then nth\_tl(n;v) @ bs else nth\_tl(n - ||v||;bs) fi )
\mvdash{} \mforall{}[bs:Top]
\mforall{}n:\mBbbN{}
(nth\_tl(n;[u / (v @ bs)]) \msim{} if n <z ||v|| + 1
then nth\_tl(n;[u / v]) @ bs
else nth\_tl(n - ||v|| + 1;bs)
fi )
By
Latex:
(ParallelLast THEN Auto)
Home
Index