Step
*
of Lemma
orbit-decomp2
∀[T:Type]
((∀x,y:T. Dec(x = y ∈ T))
⇒ finite-type(T)
⇒ (∀f:T ⟶ T
∃orbits:T List List
((∀o∈orbits.orbit(T;f;o))
∧ (∀a:T. (∃orbit∈orbits. (a ∈ orbit)))
∧ (∀o1,o2∈orbits. l_disjoint(T;o1;o2))
∧ no_repeats(T List;orbits))
supposing Inj(T;T;f)))
BY
{ (InstLemma `orbit-decomp` [] THEN RepeatFor 6 ((ParallelLast' THENA Auto)) THEN Auto) }
1
1. [T] : Type
2. ∀x,y:T. Dec(x = y ∈ T)
3. finite-type(T)
4. f : T ⟶ T
5. Inj(T;T;f)
6. orbits : T List List
7. (∀orbit∈orbits.0 < ||orbit||
∧ no_repeats(T;orbit)
∧ (∀i:ℕ||orbit||. ((f orbit[i]) = if (i =z ||orbit|| - 1) then orbit[0] else orbit[i + 1] fi ∈ T))
∧ (∀x∈orbit.∀n:ℕ. (f^n x ∈ orbit)))
8. ∀a:T. (∃orbit∈orbits. (a ∈ orbit))
9. (∀o1,o2∈orbits. l_disjoint(T;o1;o2))
⊢ (∀o∈orbits.orbit(T;f;o))
2
1. [T] : Type
2. ∀x,y:T. Dec(x = y ∈ T)
3. finite-type(T)
4. f : T ⟶ T
5. Inj(T;T;f)
6. orbits : T List List
7. (∀orbit∈orbits.0 < ||orbit||
∧ no_repeats(T;orbit)
∧ (∀i:ℕ||orbit||. ((f orbit[i]) = if (i =z ||orbit|| - 1) then orbit[0] else orbit[i + 1] fi ∈ T))
∧ (∀x∈orbit.∀n:ℕ. (f^n x ∈ orbit)))
8. ∀a:T. (∃orbit∈orbits. (a ∈ orbit))
9. (∀o1,o2∈orbits. l_disjoint(T;o1;o2))
10. (∀o∈orbits.orbit(T;f;o))
11. ∀a:T. (∃orbit∈orbits. (a ∈ orbit))
12. (∀o1,o2∈orbits. l_disjoint(T;o1;o2))
⊢ no_repeats(T List;orbits)
Latex:
Latex:
\mforall{}[T:Type]
((\mforall{}x,y:T. Dec(x = y))
{}\mRightarrow{} finite-type(T)
{}\mRightarrow{} (\mforall{}f:T {}\mrightarrow{} T
\mexists{}orbits:T List List
((\mforall{}o\mmember{}orbits.orbit(T;f;o))
\mwedge{} (\mforall{}a:T. (\mexists{}orbit\mmember{}orbits. (a \mmember{} orbit)))
\mwedge{} (\mforall{}o1,o2\mmember{}orbits. l\_disjoint(T;o1;o2))
\mwedge{} no\_repeats(T List;orbits))
supposing Inj(T;T;f)))
By
Latex:
(InstLemma `orbit-decomp` [] THEN RepeatFor 6 ((ParallelLast' THENA Auto)) THEN Auto)
Home
Index