Step
*
1
of Lemma
orbit-decomp
.....assertion..... 
1. [T] : Type
2. ∀x,y:T.  Dec(x = y ∈ T)
3. finite-type(T)
4. f : T ⟶ T
5. Inj(T;T;f)
6. orbits : T List List
7. ∀orbit:T List
     ((orbit ∈ orbits)
     
⇒ (0 < ||orbit||
        ∧ no_repeats(T;orbit)
        ∧ (∀i:ℕ||orbit||. (orbit[i] = (f^i orbit[0]) ∈ T))
        ∧ (∀b:T. ((b ∈ orbit) 
⇐⇒ ∃n:ℕ. (b = (f^n orbit[0]) ∈ T)))))
8. ∀a:T. (∃orbit∈orbits. (a ∈ orbit))
9. ∀o1:T List. ((o1 ∈ orbits) 
⇒ (∀o2:T List. ((o2 ∈ orbits) 
⇒ (o1[0] ∈ o2) 
⇒ o1 ⊆ o2)))
⊢ (∀o1,o2∈orbits.  o1 ⊆ o2 ∨ o2 ⊆ o1 ∨ l_disjoint(T;o1;o2))
BY
{ ((D 0 THEN Auto)
   THEN (Decide (orbits[j][0] ∈ orbits[i]) THENA Auto)
   THEN Try ((Sel 1 (D 0) THEN Complete (Auto)))
   THEN ((Decide (orbits[i][0] ∈ orbits[j]) THENA Auto)
         THEN Try ((Sel 2 (D 0) THEN Complete (Auto)))
         THEN Sel 3 (D 0)
         THEN Auto
         THEN RepeatFor 2 ((D 0 THEN Auto)))⋅) }
1
1. T : Type
2. ∀x,y:T.  Dec(x = y ∈ T)
3. finite-type(T)
4. f : T ⟶ T
5. Inj(T;T;f)
6. orbits : T List List
7. ∀orbit:T List
     ((orbit ∈ orbits)
     
⇒ (0 < ||orbit||
        ∧ no_repeats(T;orbit)
        ∧ (∀i:ℕ||orbit||. (orbit[i] = (f^i orbit[0]) ∈ T))
        ∧ (∀b:T. ((b ∈ orbit) 
⇐⇒ ∃n:ℕ. (b = (f^n orbit[0]) ∈ T)))))
8. ∀a:T. (∃orbit∈orbits. (a ∈ orbit))
9. ∀o1:T List. ((o1 ∈ orbits) 
⇒ (∀o2:T List. ((o2 ∈ orbits) 
⇒ (o1[0] ∈ o2) 
⇒ o1 ⊆ o2)))
10. i : ℕ||orbits||
11. j : ℕi
12. ¬(orbits[j][0] ∈ orbits[i])
13. ¬(orbits[i][0] ∈ orbits[j])
14. x : T
15. (x ∈ orbits[j])
16. (x ∈ orbits[i])
⊢ False
Latex:
Latex:
.....assertion..... 
1.  [T]  :  Type
2.  \mforall{}x,y:T.    Dec(x  =  y)
3.  finite-type(T)
4.  f  :  T  {}\mrightarrow{}  T
5.  Inj(T;T;f)
6.  orbits  :  T  List  List
7.  \mforall{}orbit:T  List
          ((orbit  \mmember{}  orbits)
          {}\mRightarrow{}  (0  <  ||orbit||
                \mwedge{}  no\_repeats(T;orbit)
                \mwedge{}  (\mforall{}i:\mBbbN{}||orbit||.  (orbit[i]  =  (f\^{}i  orbit[0])))
                \mwedge{}  (\mforall{}b:T.  ((b  \mmember{}  orbit)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  (b  =  (f\^{}n  orbit[0]))))))
8.  \mforall{}a:T.  (\mexists{}orbit\mmember{}orbits.  (a  \mmember{}  orbit))
9.  \mforall{}o1:T  List.  ((o1  \mmember{}  orbits)  {}\mRightarrow{}  (\mforall{}o2:T  List.  ((o2  \mmember{}  orbits)  {}\mRightarrow{}  (o1[0]  \mmember{}  o2)  {}\mRightarrow{}  o1  \msubseteq{}  o2)))
\mvdash{}  (\mforall{}o1,o2\mmember{}orbits.    o1  \msubseteq{}  o2  \mvee{}  o2  \msubseteq{}  o1  \mvee{}  l\_disjoint(T;o1;o2))
By
Latex:
((D  0  THEN  Auto)
  THEN  (Decide  (orbits[j][0]  \mmember{}  orbits[i])  THENA  Auto)
  THEN  Try  ((Sel  1  (D  0)  THEN  Complete  (Auto)))
  THEN  ((Decide  (orbits[i][0]  \mmember{}  orbits[j])  THENA  Auto)
              THEN  Try  ((Sel  2  (D  0)  THEN  Complete  (Auto)))
              THEN  Sel  3  (D  0)
              THEN  Auto
              THEN  RepeatFor  2  ((D  0  THEN  Auto)))\mcdot{})
Home
Index