Step * 2 2 of Lemma orbit-decomp


1. [T] Type
2. ∀x,y:T.  Dec(x y ∈ T)
3. finite-type(T)
4. T ⟶ T
5. Inj(T;T;f)
6. orbits List List
7. ∀orbit:T List
     ((orbit ∈ orbits)
      (0 < ||orbit||
        ∧ no_repeats(T;orbit)
        ∧ (∀i:ℕ||orbit||. (orbit[i] (f^i orbit[0]) ∈ T))
        ∧ (∀b:T. ((b ∈ orbit) ⇐⇒ ∃n:ℕ(b (f^n orbit[0]) ∈ T)))))
8. ∀a:T. (∃orbit∈orbits. (a ∈ orbit))
9. ∀o1:T List. ((o1 ∈ orbits)  (∀o2:T List. ((o2 ∈ orbits)  (o1[0] ∈ o2)  o1 ⊆ o2)))
10. (∀o1,o2∈orbits.  o1 ⊆ o2 ∨ o2 ⊆ o1 ∨ l_disjoint(T;o1;o2))
11. (∀o1∈orbits.(f last(o1)) o1[0] ∈ T)
⊢ ∃orbits:T List List
   ((∀orbit∈orbits.0 < ||orbit||
           ∧ no_repeats(T;orbit)
           ∧ (∀i:ℕ||orbit||. ((f orbit[i]) if (i =z ||orbit|| 1) then orbit[0] else orbit[i 1] fi  ∈ T))
           ∧ (∀x∈orbit.∀n:ℕ(f^n x ∈ orbit)))
   ∧ (∀a:T. (∃orbit∈orbits. (a ∈ orbit)))
   ∧ (∀o1,o2∈orbits.  l_disjoint(T;o1;o2)))
BY
Assert ⌜(∀o1∈orbits.∀i:ℕ||o1||. ((f o1[i]) if (i =z ||o1|| 1) then o1[0] else o1[i 1] fi  ∈ T))⌝⋅ }

1
.....assertion..... 
1. [T] Type
2. ∀x,y:T.  Dec(x y ∈ T)
3. finite-type(T)
4. T ⟶ T
5. Inj(T;T;f)
6. orbits List List
7. ∀orbit:T List
     ((orbit ∈ orbits)
      (0 < ||orbit||
        ∧ no_repeats(T;orbit)
        ∧ (∀i:ℕ||orbit||. (orbit[i] (f^i orbit[0]) ∈ T))
        ∧ (∀b:T. ((b ∈ orbit) ⇐⇒ ∃n:ℕ(b (f^n orbit[0]) ∈ T)))))
8. ∀a:T. (∃orbit∈orbits. (a ∈ orbit))
9. ∀o1:T List. ((o1 ∈ orbits)  (∀o2:T List. ((o2 ∈ orbits)  (o1[0] ∈ o2)  o1 ⊆ o2)))
10. (∀o1,o2∈orbits.  o1 ⊆ o2 ∨ o2 ⊆ o1 ∨ l_disjoint(T;o1;o2))
11. (∀o1∈orbits.(f last(o1)) o1[0] ∈ T)
⊢ (∀o1∈orbits.∀i:ℕ||o1||. ((f o1[i]) if (i =z ||o1|| 1) then o1[0] else o1[i 1] fi  ∈ T))

2
1. [T] Type
2. ∀x,y:T.  Dec(x y ∈ T)
3. finite-type(T)
4. T ⟶ T
5. Inj(T;T;f)
6. orbits List List
7. ∀orbit:T List
     ((orbit ∈ orbits)
      (0 < ||orbit||
        ∧ no_repeats(T;orbit)
        ∧ (∀i:ℕ||orbit||. (orbit[i] (f^i orbit[0]) ∈ T))
        ∧ (∀b:T. ((b ∈ orbit) ⇐⇒ ∃n:ℕ(b (f^n orbit[0]) ∈ T)))))
8. ∀a:T. (∃orbit∈orbits. (a ∈ orbit))
9. ∀o1:T List. ((o1 ∈ orbits)  (∀o2:T List. ((o2 ∈ orbits)  (o1[0] ∈ o2)  o1 ⊆ o2)))
10. (∀o1,o2∈orbits.  o1 ⊆ o2 ∨ o2 ⊆ o1 ∨ l_disjoint(T;o1;o2))
11. (∀o1∈orbits.(f last(o1)) o1[0] ∈ T)
12. (∀o1∈orbits.∀i:ℕ||o1||. ((f o1[i]) if (i =z ||o1|| 1) then o1[0] else o1[i 1] fi  ∈ T))
⊢ ∃orbits:T List List
   ((∀orbit∈orbits.0 < ||orbit||
           ∧ no_repeats(T;orbit)
           ∧ (∀i:ℕ||orbit||. ((f orbit[i]) if (i =z ||orbit|| 1) then orbit[0] else orbit[i 1] fi  ∈ T))
           ∧ (∀x∈orbit.∀n:ℕ(f^n x ∈ orbit)))
   ∧ (∀a:T. (∃orbit∈orbits. (a ∈ orbit)))
   ∧ (∀o1,o2∈orbits.  l_disjoint(T;o1;o2)))


Latex:


Latex:

1.  [T]  :  Type
2.  \mforall{}x,y:T.    Dec(x  =  y)
3.  finite-type(T)
4.  f  :  T  {}\mrightarrow{}  T
5.  Inj(T;T;f)
6.  orbits  :  T  List  List
7.  \mforall{}orbit:T  List
          ((orbit  \mmember{}  orbits)
          {}\mRightarrow{}  (0  <  ||orbit||
                \mwedge{}  no\_repeats(T;orbit)
                \mwedge{}  (\mforall{}i:\mBbbN{}||orbit||.  (orbit[i]  =  (f\^{}i  orbit[0])))
                \mwedge{}  (\mforall{}b:T.  ((b  \mmember{}  orbit)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  (b  =  (f\^{}n  orbit[0]))))))
8.  \mforall{}a:T.  (\mexists{}orbit\mmember{}orbits.  (a  \mmember{}  orbit))
9.  \mforall{}o1:T  List.  ((o1  \mmember{}  orbits)  {}\mRightarrow{}  (\mforall{}o2:T  List.  ((o2  \mmember{}  orbits)  {}\mRightarrow{}  (o1[0]  \mmember{}  o2)  {}\mRightarrow{}  o1  \msubseteq{}  o2)))
10.  (\mforall{}o1,o2\mmember{}orbits.    o1  \msubseteq{}  o2  \mvee{}  o2  \msubseteq{}  o1  \mvee{}  l\_disjoint(T;o1;o2))
11.  (\mforall{}o1\mmember{}orbits.(f  last(o1))  =  o1[0])
\mvdash{}  \mexists{}orbits:T  List  List
      ((\mforall{}orbit\mmember{}orbits.0  <  ||orbit||
                      \mwedge{}  no\_repeats(T;orbit)
                      \mwedge{}  (\mforall{}i:\mBbbN{}||orbit||
                                ((f  orbit[i])  =  if  (i  =\msubz{}  ||orbit||  -  1)  then  orbit[0]  else  orbit[i  +  1]  fi  ))
                      \mwedge{}  (\mforall{}x\mmember{}orbit.\mforall{}n:\mBbbN{}.  (f\^{}n  x  \mmember{}  orbit)))
      \mwedge{}  (\mforall{}a:T.  (\mexists{}orbit\mmember{}orbits.  (a  \mmember{}  orbit)))
      \mwedge{}  (\mforall{}o1,o2\mmember{}orbits.    l\_disjoint(T;o1;o2)))


By


Latex:
Assert  \mkleeneopen{}(\mforall{}o1\mmember{}orbits.\mforall{}i:\mBbbN{}||o1||.  ((f  o1[i])  =  if  (i  =\msubz{}  ||o1||  -  1)  then  o1[0]  else  o1[i  +  1]  fi  ))\mkleeneclose{}\mcdot{}




Home Index