Step
*
2
1
1
of Lemma
orbit-of-involution
1. T : Type
2. f : T ⟶ T
3. ∀x:T. ((f (f x)) = x ∈ T)
4. u : T
5. u1 : T
6. u2 : T
7. v : T List
8. 0 < ||[u; u1; [u2 / v]]||
9. no_repeats(T;[u; u1; [u2 / v]])
10. ∀i:ℕ||[u; u1; [u2 / v]]||
((f [u; u1; [u2 / v]][i])
= if (i =z ||[u; u1; [u2 / v]]|| - 1) then [u; u1; [u2 / v]][0] else [u; u1; [u2 / v]][i + 1] fi
∈ T)
11. 0 ≤ ||v||
⊢ False
BY
{ ((D -3 With ⌜0⌝ THENA Auto) THEN (D -1 With ⌜2⌝ THENA Auto)) }
1
1. T : Type
2. f : T ⟶ T
3. ∀x:T. ((f (f x)) = x ∈ T)
4. u : T
5. u1 : T
6. u2 : T
7. v : T List
8. 0 < ||[u; u1; [u2 / v]]||
9. ∀i:ℕ||[u; u1; [u2 / v]]||
((f [u; u1; [u2 / v]][i])
= if (i =z ||[u; u1; [u2 / v]]|| - 1) then [u; u1; [u2 / v]][0] else [u; u1; [u2 / v]][i + 1] fi
∈ T)
10. 0 ≤ ||v||
11. (¬([u; u1; [u2 / v]][0] = [u; u1; [u2 / v]][2] ∈ T)) supposing
((¬(0 = 2 ∈ ℕ)) and
2 < ||[u; u1; [u2 / v]]|| and
0 < ||[u; u1; [u2 / v]]||)
⊢ False
Latex:
Latex:
1. T : Type
2. f : T {}\mrightarrow{} T
3. \mforall{}x:T. ((f (f x)) = x)
4. u : T
5. u1 : T
6. u2 : T
7. v : T List
8. 0 < ||[u; u1; [u2 / v]]||
9. no\_repeats(T;[u; u1; [u2 / v]])
10. \mforall{}i:\mBbbN{}||[u; u1; [u2 / v]]||
((f [u; u1; [u2 / v]][i])
= if (i =\msubz{} ||[u; u1; [u2 / v]]|| - 1)
then [u; u1; [u2 / v]][0]
else [u; u1; [u2 / v]][i + 1]
fi )
11. 0 \mleq{} ||v||
\mvdash{} False
By
Latex:
((D -3 With \mkleeneopen{}0\mkleeneclose{} THENA Auto) THEN (D -1 With \mkleeneopen{}2\mkleeneclose{} THENA Auto))
Home
Index