Step
*
1
1
of Lemma
permutation-cons
.....assertion.....
1. [A] : Type
2. x : A
3. L1 : A List
4. L2 : A List
5. permutation(A;[x / L1];L2)
⊢ ∃as,bs:A List. (L2 = (as @ [x / bs]) ∈ (A List))
BY
{ ((Assert (x ∈ L2) BY
((FLemma `permutation_inversion` [-1] THENA Auto)
THEN (FLemma `permutation-contains` [-1] THENA Auto)
THEN Unfold `l_contains` (-1)
THEN With ⌜0⌝ (D (-1)) ⋅
THEN All Reduce
THEN Auto')⋅)
THEN Try ((RWO "l_member_decomp" (-1) THEN Auto))
) }
Latex:
Latex:
.....assertion.....
1. [A] : Type
2. x : A
3. L1 : A List
4. L2 : A List
5. permutation(A;[x / L1];L2)
\mvdash{} \mexists{}as,bs:A List. (L2 = (as @ [x / bs]))
By
Latex:
((Assert (x \mmember{} L2) BY
((FLemma `permutation\_inversion` [-1] THENA Auto)
THEN (FLemma `permutation-contains` [-1] THENA Auto)
THEN Unfold `l\_contains` (-1)
THEN With \mkleeneopen{}0\mkleeneclose{} (D (-1)) \mcdot{}
THEN All Reduce
THEN Auto')\mcdot{})
THEN Try ((RWO "l\_member\_decomp" (-1) THEN Auto))
)
Home
Index