Step * 2 1 1 1 of Lemma permutation-invariant2


1. [T] Type
2. [R] (T List) ⟶ (T List) ⟶ ℙ
3. Trans(T List;x,y.R[x;y])
4. Refl(T List;as,bs.R[as;bs])
5. ∀as:T List. ∀a:T.  R[[a as];as [a]]
6. ∀as:T List. ∀a1,a2:T.  R[[a1; [a2 as]];[a2; [a1 as]]]
7. as List
8. : ℕ||as|| ⟶ ℕ||as||
9. Inj(ℕ||as||;ℕ||as||;f)
10. 1 < ||as||
11. f1 {f:ℕ||as|| ⟶ ℕ||as||| Inj(ℕ||as||;ℕ||as||;f)} 
12. R[as;(as f1)]
13. T
14. u1 T
15. List
⊢ R[[u; [u1 v]];([u; [u1 v]] (0, 1))]
BY
(Subst ⌜([u; [u1 v]] (0, 1)) [u1; [u v]] ∈ (T List)⌝ 0⋅ THEN Auto) }

1
.....equality..... 
1. Type
2. (T List) ⟶ (T List) ⟶ ℙ
3. Trans(T List;x,y.R[x;y])
4. Refl(T List;as,bs.R[as;bs])
5. ∀as:T List. ∀a:T.  R[[a as];as [a]]
6. ∀as:T List. ∀a1,a2:T.  R[[a1; [a2 as]];[a2; [a1 as]]]
7. as List
8. : ℕ||as|| ⟶ ℕ||as||
9. Inj(ℕ||as||;ℕ||as||;f)
10. 1 < ||as||
11. f1 {f:ℕ||as|| ⟶ ℕ||as||| Inj(ℕ||as||;ℕ||as||;f)} 
12. R[as;(as f1)]
13. T
14. u1 T
15. List
⊢ ([u; [u1 v]] (0, 1)) [u1; [u v]] ∈ (T List)


Latex:


Latex:

1.  [T]  :  Type
2.  [R]  :  (T  List)  {}\mrightarrow{}  (T  List)  {}\mrightarrow{}  \mBbbP{}
3.  Trans(T  List;x,y.R[x;y])
4.  Refl(T  List;as,bs.R[as;bs])
5.  \mforall{}as:T  List.  \mforall{}a:T.    R[[a  /  as];as  @  [a]]
6.  \mforall{}as:T  List.  \mforall{}a1,a2:T.    R[[a1;  [a2  /  as]];[a2;  [a1  /  as]]]
7.  as  :  T  List
8.  f  :  \mBbbN{}||as||  {}\mrightarrow{}  \mBbbN{}||as||
9.  Inj(\mBbbN{}||as||;\mBbbN{}||as||;f)
10.  1  <  ||as||
11.  f1  :  \{f:\mBbbN{}||as||  {}\mrightarrow{}  \mBbbN{}||as|||  Inj(\mBbbN{}||as||;\mBbbN{}||as||;f)\} 
12.  R[as;(as  o  f1)]
13.  u  :  T
14.  u1  :  T
15.  v  :  T  List
\mvdash{}  R[[u;  [u1  /  v]];([u;  [u1  /  v]]  o  (0,  1))]


By


Latex:
(Subst  \mkleeneopen{}([u;  [u1  /  v]]  o  (0,  1))  =  [u1;  [u  /  v]]\mkleeneclose{}  0\mcdot{}  THEN  Auto)




Home Index