Step
*
1
of Lemma
select-remove-first
1. T : Type
2. u : T
3. v : T List
4. P : {x:T| (x ∈ [u / v])} ⟶ 𝔹
5. P u ∈ 𝔹
6. P ∈ {x:T| (x ∈ v)} ⟶ 𝔹
7. ∀i:ℕ||remove-first(P;v)||
(remove-first(P;v)[i] ~ v[i] supposing ∀j:ℕi + 1. (¬↑(P v[j]))
∧ remove-first(P;v)[i] ~ v[i + 1] supposing ∃j:ℕi + 1. (↑(P v[j])))
8. ↑(P u)
⊢ (||v|| ≤ (||v|| + 1))
⇒ (∀i:ℕ||v||
(v[i] ~ [u / v][i] supposing ∀j:ℕi + 1. (¬↑(P [u / v][j]))
∧ v[i] ~ [u / v][i + 1] supposing ∃j:ℕi + 1. (↑(P [u / v][j]))))
BY
{ ((D 0 THENA Auto) THEN Thin (-1) THEN RepeatFor 3 ((D 0 THENA Thin 6 THEN Auto))) }
1
1. T : Type
2. u : T
3. v : T List
4. P : {x:T| (x ∈ [u / v])} ⟶ 𝔹
5. P u ∈ 𝔹
6. P ∈ {x:T| (x ∈ v)} ⟶ 𝔹
7. ∀i:ℕ||remove-first(P;v)||
(remove-first(P;v)[i] ~ v[i] supposing ∀j:ℕi + 1. (¬↑(P v[j]))
∧ remove-first(P;v)[i] ~ v[i + 1] supposing ∃j:ℕi + 1. (↑(P v[j])))
8. ↑(P u)
9. i : ℕ||v||
10. ∀j:ℕi + 1. (¬↑(P [u / v][j]))
⊢ v[i] ~ [u / v][i]
2
1. T : Type
2. u : T
3. v : T List
4. P : {x:T| (x ∈ [u / v])} ⟶ 𝔹
5. P u ∈ 𝔹
6. P ∈ {x:T| (x ∈ v)} ⟶ 𝔹
7. ∀i:ℕ||remove-first(P;v)||
(remove-first(P;v)[i] ~ v[i] supposing ∀j:ℕi + 1. (¬↑(P v[j]))
∧ remove-first(P;v)[i] ~ v[i + 1] supposing ∃j:ℕi + 1. (↑(P v[j])))
8. ↑(P u)
9. i : ℕ||v||
10. ∃j:ℕi + 1. (↑(P [u / v][j]))
⊢ v[i] ~ [u / v][i + 1]
Latex:
Latex:
1. T : Type
2. u : T
3. v : T List
4. P : \{x:T| (x \mmember{} [u / v])\} {}\mrightarrow{} \mBbbB{}
5. P u \mmember{} \mBbbB{}
6. P \mmember{} \{x:T| (x \mmember{} v)\} {}\mrightarrow{} \mBbbB{}
7. \mforall{}i:\mBbbN{}||remove-first(P;v)||
(remove-first(P;v)[i] \msim{} v[i] supposing \mforall{}j:\mBbbN{}i + 1. (\mneg{}\muparrow{}(P v[j]))
\mwedge{} remove-first(P;v)[i] \msim{} v[i + 1] supposing \mexists{}j:\mBbbN{}i + 1. (\muparrow{}(P v[j])))
8. \muparrow{}(P u)
\mvdash{} (||v|| \mleq{} (||v|| + 1))
{}\mRightarrow{} (\mforall{}i:\mBbbN{}||v||
(v[i] \msim{} [u / v][i] supposing \mforall{}j:\mBbbN{}i + 1. (\mneg{}\muparrow{}(P [u / v][j]))
\mwedge{} v[i] \msim{} [u / v][i + 1] supposing \mexists{}j:\mBbbN{}i + 1. (\muparrow{}(P [u / v][j]))))
By
Latex:
((D 0 THENA Auto) THEN Thin (-1) THEN RepeatFor 3 ((D 0 THENA Thin 6 THEN Auto)))
Home
Index