Step * 2 1 2 of Lemma select-remove-first


1. Type
2. T
3. List
4. {x:T| (x ∈ [u v])}  ⟶ 𝔹
5. ¬↑(P u)
6. ff ∈ 𝔹
7. P ∈ {x:T| (x ∈ v)}  ⟶ 𝔹
8. ∀i:ℕ||remove-first(P;v)||
     (remove-first(P;v)[i] v[i] supposing ∀j:ℕ1. (¬↑(P v[j]))
     ∧ remove-first(P;v)[i] v[i 1] supposing ∃j:ℕ1. (↑(P v[j])))
9. : ℕ||remove-first(P;v)|| 1
10. 0 ∈ ℤ
11. ∃j:ℕ1. (↑(P [u v][j]))
⊢ v[0]
BY
(-1)
THEN (D -2 THENA Auto)
THEN Subst' -1
THEN All Reduce
THEN Auto'⋅ }


Latex:


Latex:

1.  T  :  Type
2.  u  :  T
3.  v  :  T  List
4.  P  :  \{x:T|  (x  \mmember{}  [u  /  v])\}    {}\mrightarrow{}  \mBbbB{}
5.  \mneg{}\muparrow{}(P  u)
6.  ff  \mmember{}  \mBbbB{}
7.  P  \mmember{}  \{x:T|  (x  \mmember{}  v)\}    {}\mrightarrow{}  \mBbbB{}
8.  \mforall{}i:\mBbbN{}||remove-first(P;v)||
          (remove-first(P;v)[i]  \msim{}  v[i]  supposing  \mforall{}j:\mBbbN{}i  +  1.  (\mneg{}\muparrow{}(P  v[j]))
          \mwedge{}  remove-first(P;v)[i]  \msim{}  v[i  +  1]  supposing  \mexists{}j:\mBbbN{}i  +  1.  (\muparrow{}(P  v[j])))
9.  i  :  \mBbbN{}||remove-first(P;v)||  +  1
10.  i  =  0
11.  \mexists{}j:\mBbbN{}1.  (\muparrow{}(P  [u  /  v][j]))
\mvdash{}  u  \msim{}  v[0]


By


Latex:
D  (-1)
THEN  (D  -2  THENA  Auto)
THEN  Subst'  j  \msim{}  0  -1
THEN  All  Reduce
THEN  Auto'\mcdot{}




Home Index