Step * 2 2 1 2 1 2 of Lemma select-remove-first


1. Type
2. T
3. List
4. {x:T| (x ∈ [u v])}  ⟶ 𝔹
5. ¬↑(P u)
6. ff ∈ 𝔹
7. P ∈ {x:T| (x ∈ v)}  ⟶ 𝔹
8. ∀i:ℕ||remove-first(P;v)||
     (remove-first(P;v)[i] v[i] supposing ∀j:ℕ1. (¬↑(P v[j]))
     ∧ remove-first(P;v)[i] v[i 1] supposing ∃j:ℕ1. (↑(P v[j])))
9. : ℕ||remove-first(P;v)|| 1
10. ¬(i 0 ∈ ℤ)
11. remove-first(P;v)[i 1] v[(i 1) 1] supposing ∃j:ℕ(i 1) 1. (↑(P v[j]))
12. remove-first(P;v)[i 1] v[i 1] supposing ∀j:ℕ(i 1) 1. (¬↑(P v[j]))
13. ||remove-first(P;v)|| ≤ ||v||
14. : ℕ1
15. j < ||[u v]||
⊢ ¬↑(P [u v][j]) ∈ ℙ
BY
Thin 7
THEN Auto }


Latex:


Latex:

1.  T  :  Type
2.  u  :  T
3.  v  :  T  List
4.  P  :  \{x:T|  (x  \mmember{}  [u  /  v])\}    {}\mrightarrow{}  \mBbbB{}
5.  \mneg{}\muparrow{}(P  u)
6.  ff  \mmember{}  \mBbbB{}
7.  P  \mmember{}  \{x:T|  (x  \mmember{}  v)\}    {}\mrightarrow{}  \mBbbB{}
8.  \mforall{}i:\mBbbN{}||remove-first(P;v)||
          (remove-first(P;v)[i]  \msim{}  v[i]  supposing  \mforall{}j:\mBbbN{}i  +  1.  (\mneg{}\muparrow{}(P  v[j]))
          \mwedge{}  remove-first(P;v)[i]  \msim{}  v[i  +  1]  supposing  \mexists{}j:\mBbbN{}i  +  1.  (\muparrow{}(P  v[j])))
9.  i  :  \mBbbN{}||remove-first(P;v)||  +  1
10.  \mneg{}(i  =  0)
11.  remove-first(P;v)[i  -  1]  \msim{}  v[(i  -  1)  +  1]  supposing  \mexists{}j:\mBbbN{}(i  -  1)  +  1.  (\muparrow{}(P  v[j]))
12.  remove-first(P;v)[i  -  1]  \msim{}  v[i  -  1]  supposing  \mforall{}j:\mBbbN{}(i  -  1)  +  1.  (\mneg{}\muparrow{}(P  v[j]))
13.  ||remove-first(P;v)||  \mleq{}  ||v||
14.  j  :  \mBbbN{}i  +  1
15.  j  <  ||[u  /  v]||
\mvdash{}  \mneg{}\muparrow{}(P  [u  /  v][j])  \mmember{}  \mBbbP{}


By


Latex:
Thin  7
THEN  Auto




Home Index