Step
*
4
1
1
of Lemma
select_concat
1. [T] : Type
2. u : T List
3. v : T List List
4. ∀n:ℕ||concat(v)||
∃m:ℕ||v||
((||concat(firstn(m;v))|| ≤ n)
c∧ n - ||concat(firstn(m;v))|| < ||v[m]||
c∧ (concat(v)[n] = v[m][n - ||concat(firstn(m;v))||] ∈ T))
5. n : ℕ||concat([u / v])||
6. n < ||u||
⊢ ∃m:ℕ||v|| + 1
((||concat(firstn(m;[u / v]))|| ≤ n)
c∧ n - ||concat(firstn(m;[u / v]))|| < ||[u / v][m]||
c∧ (u @ concat(v)[n] = [u / v][m][n - ||concat(firstn(m;[u / v]))||] ∈ T))
BY
{ InstConcl [⌜0⌝] ⋅ }
1
.....wf.....
1. T : Type
2. u : T List
3. v : T List List
4. ∀n:ℕ||concat(v)||
∃m:ℕ||v||
((||concat(firstn(m;v))|| ≤ n)
c∧ n - ||concat(firstn(m;v))|| < ||v[m]||
c∧ (concat(v)[n] = v[m][n - ||concat(firstn(m;v))||] ∈ T))
5. n : ℕ||concat([u / v])||
6. n < ||u||
⊢ 0 ∈ ℕ||v|| + 1
2
1. [T] : Type
2. u : T List
3. v : T List List
4. ∀n:ℕ||concat(v)||
∃m:ℕ||v||
((||concat(firstn(m;v))|| ≤ n)
c∧ n - ||concat(firstn(m;v))|| < ||v[m]||
c∧ (concat(v)[n] = v[m][n - ||concat(firstn(m;v))||] ∈ T))
5. n : ℕ||concat([u / v])||
6. n < ||u||
⊢ (||concat(firstn(0;[u / v]))|| ≤ n)
c∧ n - ||concat(firstn(0;[u / v]))|| < ||[u / v][0]||
c∧ (u @ concat(v)[n] = [u / v][0][n - ||concat(firstn(0;[u / v]))||] ∈ T)
3
.....wf.....
1. T : Type
2. u : T List
3. v : T List List
4. ∀n:ℕ||concat(v)||
∃m:ℕ||v||
((||concat(firstn(m;v))|| ≤ n)
c∧ n - ||concat(firstn(m;v))|| < ||v[m]||
c∧ (concat(v)[n] = v[m][n - ||concat(firstn(m;v))||] ∈ T))
5. n : ℕ||concat([u / v])||
6. n < ||u||
7. m : ℕ||v|| + 1
⊢ (||concat(firstn(m;[u / v]))|| ≤ n)
c∧ n - ||concat(firstn(m;[u / v]))|| < ||[u / v][m]||
c∧ (u @ concat(v)[n] = [u / v][m][n - ||concat(firstn(m;[u / v]))||] ∈ T) ∈ ℙ
Latex:
Latex:
1. [T] : Type
2. u : T List
3. v : T List List
4. \mforall{}n:\mBbbN{}||concat(v)||
\mexists{}m:\mBbbN{}||v||
((||concat(firstn(m;v))|| \mleq{} n)
c\mwedge{} n - ||concat(firstn(m;v))|| < ||v[m]||
c\mwedge{} (concat(v)[n] = v[m][n - ||concat(firstn(m;v))||]))
5. n : \mBbbN{}||concat([u / v])||
6. n < ||u||
\mvdash{} \mexists{}m:\mBbbN{}||v|| + 1
((||concat(firstn(m;[u / v]))|| \mleq{} n)
c\mwedge{} n - ||concat(firstn(m;[u / v]))|| < ||[u / v][m]||
c\mwedge{} (u @ concat(v)[n] = [u / v][m][n - ||concat(firstn(m;[u / v]))||]))
By
Latex:
InstConcl [\mkleeneopen{}0\mkleeneclose{}] \mcdot{}
Home
Index