Step
*
2
of Lemma
sorted-by-strict-unique
1. T : Type
2. R : T ⟶ T ⟶ ℙ
3. Trans(T;a,b.R a b)
4. AntiSym(T;a,b.R a b)
5. ∀[sa,sb:T List].
(sa = sb ∈ (T List)) supposing
(no_repeats(T;sa) and
sorted-by(R;sa) and
no_repeats(T;sb) and
sorted-by(R;sb) and
set-equal(T;sa;sb))
6. ∀a:T. (¬(R a a))
7. sa : T List
8. sb : T List
9. set-equal(T;sa;sb)
10. sorted-by(R;sb)
11. sorted-by(R;sa)
⊢ no_repeats(T;sa)
BY
{ OnMaybeHyp 11 (\h. (FLemma `sorted-by-strict-no_repeats` [h] THEN Complete (Auto))) }
Latex:
Latex:
1. T : Type
2. R : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. Trans(T;a,b.R a b)
4. AntiSym(T;a,b.R a b)
5. \mforall{}[sa,sb:T List].
(sa = sb) supposing
(no\_repeats(T;sa) and
sorted-by(R;sa) and
no\_repeats(T;sb) and
sorted-by(R;sb) and
set-equal(T;sa;sb))
6. \mforall{}a:T. (\mneg{}(R a a))
7. sa : T List
8. sb : T List
9. set-equal(T;sa;sb)
10. sorted-by(R;sb)
11. sorted-by(R;sa)
\mvdash{} no\_repeats(T;sa)
By
Latex:
OnMaybeHyp 11 (\mbackslash{}h. (FLemma `sorted-by-strict-no\_repeats` [h] THEN Complete (Auto)))
Home
Index